182 research outputs found

    Negative Entropy of Mixing for Vanadium-Platinum Solutions

    Get PDF
    The phonon densities of states for pure vanadium and the solid solutions V-6.25% Ni, Pd, Pt were determined from inelastic neutron scattering measurements. The solute atoms caused a large stiffening of the phonons, resulting in large, negative vibrational entropies of mixing. For V-6.25%Pt, the negative vibrational entropy of mixing exceeds the conventional positive chemical entropy of mixing. This negative total entropy of mixing should extend to lower concentrations of Pt, and the effect on the bcc solvus line is discussed. The experimental data were inverted to obtain interatomic force constants by using a Born–von Kármán model with an iterative optimization algorithm. The stiffening of bonds responsible for the decrease of entropy was found to occur mainly in first-nearest-neighbor solute-host bonds, and correlates in part with the solute metallic radius

    Phonon entropy of alloying and ordering of Cu-Au

    Get PDF
    Inelastic neutron scattering spectra were measured with a time-of-flight spectrometer on six disordered Cu-Au alloys at 300 K. The neutron-weighted phonon density of states was obtained from a conventional analysis of these spectra. Several methods were developed to account for this neutron weighting and obtain the phonon entropy of the disordered alloys. The phonon entropies of formation of disordered fcc Cu-Au alloys obtained in this way were generally mutually consistent, and were also consistent with predictions from a cluster approximation obtained from ab-initio calculations by Ozolin[underaccent cedilla [below] s-breve, Wolverton, and Zunger. We estimate a phonon entropy of disordering of 0.15±0.05kB/atom in Cu3Au at 300 K. A resonance mode associated with the motions of the heavy Au atoms in the Cu-rich alloys was observed at 9 meV. An analysis of the resonance mode provided a check on the partial phonon entropy of Au atoms

    Vibrational entropy of spinodal decomposition in FeCr

    Get PDF
    Inelastic neutron-scattering spectra were measured on stoichiometric Fe0.50Cr0.50 prepared as a body-centered-cubic (bcc) solid solution, and after increasing amounts of chemical unmixing on the bcc lattice induced by annealing the solid solution at 773 K. These spectra were reduced by a conventional procedure to a neutron-weighted vibrational density of states. Mössbauer spectrometry was used to characterize the extent of decomposition after annealing. A neutron-weight correction was performed, using results from the Mössbauer spectra and recent data on inelastic nuclear resonant scattering from 57Fe-Cr. The vibrational entropy of decomposition was found to be –0.17±0.01kB/atom, nearly equal to the change in configurational entropy after spinodal decomposition. Effects of vibrational entropy on the thermodynamics of unmixing are analyzed, showing a large effect on the free energy with the formation of Cr-rich zones, and a large effect on the critical temperature for spinodal decomposition for equiatomic Fe0.50Cr0.50

    Effects of vacancies on phonon entropy of B2 FeAl

    Get PDF
    The phonon density of states (DOS) and phonon entropy of B2 FeAl were determined as functions of the Fe site vacancy concentration using several scattering techniques and were computed from first principles. Measurements at elevated temperature and pressure were performed to explore volume effects, test the usefulness of the quasiharmonic (QH) approximation, and provide comparison for the first-principles calculations. The average temperature and pressure dependencies of phonons were consistent with the QH model. The decrease in specific volume associated with the introduction of vacancies causes a stiffening of the DOS that was captured well with the experimentally determined Grüneisen parameter. Features associated with vacancies in the DOS are not well explained by this model, however, especially in the gap between the acoustic and optic branches. First-principles calculations indicated that these modes are primarily associated with vibrations of Al atoms in the first-nearest-neighbor shell of the vacancy, with some vibration amplitude also involving the second-nearest-neighbor Fe atoms. At the vacancy concentrations of study, the phonon entropy of vacancy formation was found to be approximately −1.7k_B/atom, about half as large and of opposite sign as the configurational entropy of vacancy formation

    Smart homes and their users:a systematic analysis and key challenges

    Get PDF
    Published research on smart homes and their users is growing exponentially, yet a clear understanding of who these users are and how they might use smart home technologies is missing from a field being overwhelmingly pushed by technology developers. Through a systematic analysis of peer-reviewed literature on smart homes and their users, this paper takes stock of the dominant research themes and the linkages and disconnects between them. Key findings within each of nine themes are analysed, grouped into three: (1) views of the smart home-functional, instrumental, socio-technical; (2) users and the use of the smart home-prospective users, interactions and decisions, using technologies in the home; and (3) challenges for realising the smart home-hardware and software, design, domestication. These themes are integrated into an organising framework for future research that identifies the presence or absence of cross-cutting relationships between different understandings of smart homes and their users. The usefulness of the organising framework is illustrated in relation to two major concerns-privacy and control-that have been narrowly interpreted to date, precluding deeper insights and potential solutions. Future research on smart homes and their users can benefit by exploring and developing cross-cutting relationships between the research themes identified

    Benthic and Hyporheic Macroinvertebrate Distribution Within the Heads and Tails of Riffles During Baseflow Conditions

    Get PDF
    The distribution of lotic fauna is widely acknowledged to be patchy reflecting the interaction between biotic and abiotic factors. In an in-situ field study, the distribution of benthic and hyporheic invertebrates in the heads (downwelling) and tails (upwelling) of riffles were examined during stable baseflow conditions. Riffle heads were found to contain a greater proportion of interstitial fine sediment than riffle tails. Significant differences in the composition of benthic communities were associated with the amount of fine sediment. Riffle tail habitats supported a greater abundance and diversity of invertebrates sensitive to fine sediment such as EPT taxa. Shredder feeding taxa were more abundant in riffle heads suggesting greater availability of organic matter. In contrast, no significant differences in the hyporheic community were recorded between riffle heads and tails. We hypothesise that clogging of hyporheic interstices with fine sediments may have resulted in the homogenization of the invertebrate community by limiting faunal movement into the hyporheic zone at both the riffle head and tail. The results suggest that vertical hydrological exchange significantly influences the distribution of fine sediment and macroinvertebrate communities at the riffle scale

    PS Integrins and Laminins: Key Regulators of Cell Migration during Drosophila Embryogenesis

    Get PDF
    During embryonic development, there are numerous cases where organ or tissue formation depends upon the migration of primordial cells. In the Drosophila embryo, the visceral mesoderm (vm) acts as a substrate for the migration of several cell populations of epithelial origin, including the endoderm, the trachea and the salivary glands. These migratory processes require both integrins and laminins. The current model is that αPS1βPS (PS1) and/or αPS3βPS (PS3) integrins are required in migrating cells, whereas αPS2βPS (PS2) integrin is required in the vm, where it performs an as yet unidentified function. Here, we show that PS1 integrins are also required for the migration over the vm of cells of mesodermal origin, the caudal visceral mesoderm (CVM). These results support a model in which PS1 might have evolved to acquire the migratory function of integrins, irrespective of the origin of the tissue. This integrin function is highly specific and its specificity resides mainly in the extracellular domain. In addition, we have identified the Laminin α1,2 trimer, as the key extracellular matrix (ECM) component regulating CVM migration. Furthermore, we show that, as it is the case in vertebrates, integrins, and specifically PS2, contributes to CVM movement by participating in the correct assembly of the ECM that serves as tracks for migration

    Ageing vision and falls: a review

    Get PDF
    Background: Falls are the leading cause of accidental injury and death among older adults. One of three adults over the age of 65 years falls annually. As the size of elderly population increases, falls become a major concern for public health and there is a pressing need to understand the causes of falls thoroughly. Main body of the abstract: While it is well documented that visual functions such as visual acuity, contrast sensitivity, and stereo acuity are correlated with fall risks, little attention has been paid to the relationship between falls and the ability of the visual system to perceive motion in the environment. The omission of visual motion perception in the literature is a critical gap because it is an essential function in maintaining balance. In the present article, we first review existing studies regarding visual risk factors for falls and the effect of ageing vision on falls. We then present a group of phenomena such as vection and sensory reweighting that provide information on how visual motion signals are used to maintain balance. Conclusion: We suggest that the current list of visual risk factors for falls should be elaborated by taking into account the relationship between visual motion perception and balance control
    corecore