178 research outputs found

    Femtosecond Dynamics of the Exciton Self-Trapping Process in a Quasi-One-Dimensional Halogen-Bridged Platinum Complex

    Get PDF
    Self-trapped-exciton (STE) luminescence of quasi-one-dimensional halogen-bridged platinum complex [Pt(en)2] [Pt(en)2Cl2] (ClO4)4 is investigated by femtosecond time-resolved luminescence spectroscopy. In the high energy tail of the luminescence band, a fast rise and decay are seen, whereas around the luminescence peak energy a slow rise of about 500 fs is observed. This rise becomes faster at the low energy side of the band. These results are consistently explained by the cooling of prethermalized STEs, following the rapid self-trapping which is estimated to occur within 140 fs

    Five-year review of an international clinical research-training program

    Get PDF
    The exponential increase in clinical research has profoundly changed medical sciences. Evidence that has accumulated in the past three decades from clinical trials has led to the proposal that clinical care should not be based solely on clinical expertise and patient values, and should integrate robust data from systematic research. As a consequence, clinical research has become more complex and methods have become more rigorous, and evidence is usually not easily translated into clinical practice. Therefore, the instruction of clinical research methods for scientists and clinicians must adapt to this new reality. To address this challenge, a global distance-learning clinical research-training program was developed, based on collaborative learning, the pedagogical goal of which was to develop critical thinking skills in clinical research. We describe and analyze the challenges and possible solutions of this course after 5 years of experience (2008-2012) with this program. Through evaluation by students and faculty, we identified and reviewed the following challenges of our program: 1) student engagement and motivation, 2) impact of heterogeneous audience on learning, 3) learning in large groups, 4) enhancing group learning, 5) enhancing social presence, 6) dropouts, 7) quality control, and 8) course management. We discuss these issues and potential alternatives with regard to our research and background

    Observed Effect of Magnetic Fields on the Propagation of Magnetoacoustic Waves in the Lower Solar Atmosphere

    Full text link
    We study Hinode/SOT-FG observations of intensity fluctuations in Ca II H-line and G-band image sequences and their relation to simultaneous and co-spatial magnetic field measurements. We explore the G-band and H-line intensity oscillation spectra both separately and comparatively via their relative phase differences, time delays and cross-coherences. In the non-magnetic situations, both sets of fluctuations show strong oscillatory power in the 3 - 7 mHz band centered at 4.5 mHz, but this is suppressed as magnetic field increases. A relative phase analysis gives a time delay of H-line after G-band of 20\pm1 s in non-magnetic situations implying a mean effective height difference of 140 km. The maximum coherence is at 4 - 7 mHz. Under strong magnetic influence the measured delay time shrinks to 11 s with the peak coherence near 4 mHz. A second coherence maximum appears between 7.5 - 10 mHz. Investigation of the locations of this doubled-frequency coherence locates it in diffuse rings outside photospheric magnetic structures. Some possible interpretations of these results are offered.Comment: 19 pages, 6 figure

    Five-year review of an international clinical research-training program

    Get PDF
    The exponential increase in clinical research has profoundly changed medical sciences. Evidence that has accumulated in the past three decades from clinical trials has led to the proposal that clinical care should not be based solely on clinical expertise and patient values, and should integrate robust data from systematic research. As a consequence, clinical research has become more complex and methods have become more rigorous, and evidence is usually not easily translated into clinical practice. Therefore, the instruction of clinical research methods for scientists and clinicians must adapt to this new reality. To address this challenge, a global distance-learning clinical research-training program was developed, based on collaborative learning, the pedagogical goal of which was to develop critical thinking skills in clinical research. We describe and analyze the challenges and possible solutions of this course after 5 years of experience (2008-2012) with this program. Through evaluation by students and faculty, we identified and reviewed the following challenges of our program: 1) student engagement and motivation, 2) impact of heterogeneous audience on learning, 3) learning in large groups, 4) enhancing group learning, 5) enhancing social presence, 6) dropouts, 7) quality control, and 8) course management. We discuss these issues and potential alternatives with regard to our research and background

    Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1

    Get PDF
    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination (PSD) down to an electron-equivalent energy of 20 keV. In the surface dataset using a triple-coincidence tag we found the fraction of beta events that are misidentified as nuclear recoils to be <1.4×107<1.4\times 10^{-7} (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement with only a double-coincidence tag. The combined data set contains 1.23×1081.23\times10^8 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the electronic recoil contamination is <2.7×108<2.7\times10^{-8} (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe PSD parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approx. 101010^{-10} for an electron-equivalent energy threshold of 15 keV for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 104610^{-46} cm2^2, assuming negligible contribution from nuclear recoil backgrounds.Comment: Accepted for publication in Astroparticle Physic
    corecore