63 research outputs found

    Molecular Biomechanics: The Molecular Basis of How Forces Regulate Cellular Function

    Get PDF
    Recent advances have led to the emergence of molecular biomechanics as an essential element of modern biology. These efforts focus on theoretical and experimental studies of the mechanics of proteins and nucleic acids, and the understanding of the molecular mechanisms of stress transmission, mechanosensing and mechanotransduction in living cells. In particular, single-molecule biomechanics studies of proteins and DNA, and mechanochemical coupling in biomolecular motors have demonstrated the critical importance of molecular mechanics as a new frontier in bioengineering and life sciences. To stimulate a more systematic study of the basic issues in molecular biomechanics, and attract a broader range of researchers to enter this emerging field, here we discuss its significance and relevance, describe the important issues to be addressed and the most critical questions to be answered, summarize both experimental and theoretical/computational challenges, and identify some short-term and long-term goals for the field. The needs to train young researchers in molecular biomechanics with a broader knowledge base, and to bridge and integrate molecular, subcellular and cellular level studies of biomechanics are articulated.National Institutes of Health (U.S.) (grant UO1HL80711-05 to GB)National Institutes of Health (U.S.) (grant R01GM076689-01)National Institutes of Health (U.S.) (grant R01AR033236-26)National Institutes of Health (U.S.) (grant R01GM087677-01A1)National Institutes of Health (U.S.) (grant R01AI44902)National Institutes of Health (U.S.) (grant R01AI38282)National Science Foundation (U.S.) (grant CMMI-0645054)National Science Foundation (U.S.) (grant CBET-0829205)National Science Foundation (U.S.) (grant CAREER-0955291

    Structure, Function, and Modification of the Voltage Sensor in Voltage-Gated Ion Channels

    Full text link

    Desensitization of mechano-gated K(2P) channels

    No full text
    The neuronal mechano-gated K(2P) channels TREK-1 and TRAAK show pronounced desensitization within 100 ms of membrane stretch. Desensitization persists in the presence of cytoskeleton disrupting agents, upon patch excision, and when channels are expressed in membrane blebs. Mechanosensitive currents evoked with a variety of complex stimulus protocols were globally fit to a four-state cyclic kinetic model in detailed balance, without the need to introduce adaptation of the stimulus. However, we show that patch stress can be a complex function of time and stimulation history. The kinetic model couples desensitization to activation, so that gentle conditioning stimuli do not cause desensitization. Prestressing the channels with pressure, amphipaths, intracellular acidosis, or the E306A mutation reduces the peak-to-steady-state ratio by changing the preexponential terms of the rate constants, increasing the steady-state current amplitude. The mechanical responsivity can be accounted for by a change of in-plane area of ≈2 nm(2) between the closed and open conformations. Desensitization and its regulation by chemical messengers is predicted to condition the physiological role of K(2P) channels

    A common mechanism underlies stretch activation and receptor activation of TRPC6 channels

    No full text
    The TRP family of ion channels transduce an extensive range of chemical and physical signals. TRPC6 is a receptor-activated nonselective cation channel expressed widely in vascular smooth muscle and other cell types. We report here that TRPC6 is also a sensor of mechanically and osmotically induced membrane stretch. Pressure-induced activation of TRPC6 was independent of phospholipase C. The stretch responses were blocked by the tarantula peptide, GsMTx-4, known to specifically inhibit mechanosensitive channels by modifying the external lipid-channel boundary. The GsMTx-4 peptide also blocked the activation of TRPC6 channels by either receptor-induced PLC activation or by direct application of diacylglycerol. The effects of the peptide on both stretch- and diacylglycerol-mediated TRPC6 activation indicate that the mechanical and chemical lipid sensing by the channel has a common molecular mechanism that may involve lateral-lipid tension. The mechanosensing properties of TRPC6 channels highly expressed in smooth muscle cells are likely to play a key role in regulating myogenic tone in vascular tissue
    • …
    corecore