613 research outputs found
Triadic motifs and dyadic self-organization in the World Trade Network
In self-organizing networks, topology and dynamics coevolve in a continuous
feedback, without exogenous driving. The World Trade Network (WTN) is one of
the few empirically well documented examples of self-organizing networks: its
topology strongly depends on the GDP of world countries, which in turn depends
on the structure of trade. Therefore, understanding which are the key
topological properties of the WTN that deviate from randomness provides direct
empirical information about the structural effects of self-organization. Here,
using an analytical pattern-detection method that we have recently proposed, we
study the occurrence of triadic "motifs" (subgraphs of three vertices) in the
WTN between 1950 and 2000. We find that, unlike other properties, motifs are
not explained by only the in- and out-degree sequences. By contrast, they are
completely explained if also the numbers of reciprocal edges are taken into
account. This implies that the self-organization process underlying the
evolution of the WTN is almost completely encoded into the dyadic structure,
which strongly depends on reciprocity.Comment: 12 pages, 3 figures; Best Paper Award at the 6th International
Conference on Self-Organizing Systems, Delft, The Netherlands, 15-16/03/201
Entropy-based approach to missing-links prediction
Link-prediction is an active research field within network theory, aiming at uncovering missing connections or predicting the emergence of future relationships from the observed network structure. This paper represents our contribution to the stream of research concerning missing links prediction. Here, we propose an entropy-based method to predict a given percentage of missing links, by identifying them with the most probable non-observed ones. The probability coefficients are computed by solving opportunely defined null-models over the accessible network structure. Upon comparing our likelihood-based, local method with the most popular algorithms over a set of economic, financial and food networks, we find ours to perform best, as pointed out by a number of statistical indicators (e.g. the precision, the area under the ROC curve, etc.). Moreover, the entropy-based formalism adopted in the present paper allows us to straightforwardly extend the link-prediction exercise to directed networks as well, thus overcoming one of the main limitations of current algorithms. The higher accuracy achievable by employing these methods - together with their larger flexibility - makes them strong competitors of available link-prediction algorithms
Uncovering the mesoscale structure of the credit default swap market to improve portfolio risk modelling
One of the most challenging aspects in the analysis and modelling of
financial markets, including Credit Default Swap (CDS) markets, is the presence
of an emergent, intermediate level of structure standing in between the
microscopic dynamics of individual financial entities and the macroscopic
dynamics of the market as a whole. This elusive, mesoscopic level of
organisation is often sought for via factor models that ultimately decompose
the market according to geographic regions and economic industries. However, at
a more general level the presence of mesoscopic structure might be revealed in
an entirely data-driven approach, looking for a modular and possibly
hierarchical organisation of the empirical correlation matrix between financial
time series. The crucial ingredient in such an approach is the definition of an
appropriate null model for the correlation matrix. Recent research showed that
community detection techniques developed for networks become intrinsically
biased when applied to correlation matrices. For this reason, a method based on
Random Matrix Theory has been developed, which identifies the optimal
hierarchical decomposition of the system into internally correlated and
mutually anti-correlated communities. Building upon this technique, here we
resolve the mesoscopic structure of the CDS market and identify groups of
issuers that cannot be traced back to standard industry/region taxonomies,
thereby being inaccessible to standard factor models. We use this decomposition
to introduce a novel default risk model that is shown to outperform more
traditional alternatives.Comment: Quantitative Finance (2021
Italian Twitter semantic network during the Covid-19 epidemic
The Covid-19 pandemic has had a deep impact on the lives of the entire world population, inducing a participated societal debate. As in other contexts, the debate has been the subject of several d/misinformation campaigns; in a quite unprecedented fashion, however, the presence of false information has seriously put at risk the public health. In this sense, detecting the presence of malicious narratives and identifying the kinds of users that are more prone to spread them represent the first step to limit the persistence of the former ones. In the present paper we analyse the semantic network observed on Twitter during the first Italian lockdown (induced by the hashtags contained in approximately 1.5 millions tweets published between the 23rd of March 2020 and the 23rd of April 2020) and study the extent to which various discursive communities are exposed to d/misinformation arguments. As observed in other studies, the recovered discursive communities largely overlap with traditional political parties, even if the debated topics concern different facets of the management of the pandemic. Although the themes directly related to d/misinformation are a minority of those discussed within our semantic networks, their popularity is unevenly distributed among the various discursive communities
Spatial effects in real networks: measures, null models, and applications
Spatially embedded networks are shaped by a combination of purely topological
(space-independent) and space-dependent formation rules. While it is quite easy
to artificially generate networks where the relative importance of these two
factors can be varied arbitrarily, it is much more difficult to disentangle
these two architectural effects in real networks. Here we propose a solution to
the problem by introducing global and local measures of spatial effects that,
through a comparison with adequate null models, effectively filter out the
spurious contribution of non-spatial constraints. Our filtering allows us to
consistently compare different embedded networks or different historical
snapshots of the same network. As a challenging application we analyse the
World Trade Web, whose topology is expected to depend on geographic distances
but is also strongly determined by non-spatial constraints (degree sequence or
GDP). Remarkably, we are able to detect weak but significant spatial effects
both locally and globally in the network, showing that our method succeeds in
retrieving spatial information even when non-spatial factors dominate. We
finally relate our results to the economic literature on gravity models and
trade globalization
Null Models of Economic Networks: The Case of the World Trade Web
In all empirical-network studies, the observed properties of economic
networks are informative only if compared with a well-defined null model that
can quantitatively predict the behavior of such properties in constrained
graphs. However, predictions of the available null-model methods can be derived
analytically only under assumptions (e.g., sparseness of the network) that are
unrealistic for most economic networks like the World Trade Web (WTW). In this
paper we study the evolution of the WTW using a recently-proposed family of
null network models. The method allows to analytically obtain the expected
value of any network statistic across the ensemble of networks that preserve on
average some local properties, and are otherwise fully random. We compare
expected and observed properties of the WTW in the period 1950-2000, when
either the expected number of trade partners or total country trade is kept
fixed and equal to observed quantities. We show that, in the binary WTW,
node-degree sequences are sufficient to explain higher-order network properties
such as disassortativity and clustering-degree correlation, especially in the
last part of the sample. Conversely, in the weighted WTW, the observed sequence
of total country imports and exports are not sufficient to predict higher-order
patterns of the WTW. We discuss some important implications of these findings
for international-trade models.Comment: 39 pages, 46 figures, 2 table
Reconstructing Mesoscale Network Structures
When facing the problem of reconstructing complex mesoscale network structures, it is generally believed that models encoding the nodes organization into modules must be employed. The present paper focuses on two block structures that characterize the empirical mesoscale organization of many real-world networks, i.e., the bow-tie and the core-periphery ones, with the aim of quantifying the minimal amount of topological information that needs to be enforced in order to reproduce the topological details of the former. Our analysis shows that constraining the network degree sequences is often enough to reproduce such structures, as confirmed by model selection criteria as AIC or BIC. As a byproduct, our paper enriches the toolbox for the analysis of bipartite networks, still far from being complete: both the bow-tie and the core-periphery structure, in fact, partition the networks into asymmetric blocks characterized by binary, directed connections, thus calling for the extension of a recently proposed method to randomize undirected, bipartite networks to the directed case
- …