140 research outputs found

    Spectral singularities in PT-symmetric periodic finite-gap systems

    Full text link
    The origin of spectral singularities in finite-gap singly periodic PT-symmetric quantum systems is investigated. We show that they emerge from a limit of band-edge states in a doubly periodic finite gap system when the imaginary period tends to infinity. In this limit, the energy gaps are contracted and disappear, every pair of band states of the same periodicity at the edges of a gap coalesces and transforms into a singlet state in the continuum. As a result, these spectral singularities turn out to be analogous to those in the non-periodic systems, where they appear as zero-width resonances. Under the change of topology from a non-compact into a compact one, spectral singularities in the class of periodic systems we study are transformed into exceptional points. The specific degeneration related to the presence of finite number of spectral singularities and exceptional points is shown to be coherently reflected by a hidden, bosonized nonlinear supersymmetry.Comment: 16 pages, 3 figures; a difference between spectral singularities and exceptional points specified, the version to appear in PR

    Quantum Mechanics of Proca Fields

    Full text link
    We construct the most general physically admissible positive-definite inner product on the space of Proca fields. Up to a trivial scaling this defines a five-parameter family of Lorentz invariant inner products that we use to construct a genuine Hilbert space for the quantum mechanics of Proca fields. If we identify the generator of time-translations with the Hamiltonian, we obtain a unitary quantum system that describes first-quantized Proca fields and does not involve the conventional restriction to the positive-frequency fields. We provide a rather comprehensive analysis of this system. In particular, we examine the conserved current density responsible for the conservation of the probabilities, explore the global gauge symmetry underlying the conservation of the probabilities, obtain a probability current density, construct position, momentum, helicity, spin, and angular momentum operators, and determine the localized Proca fields. We also compute the generalized parity (\cP), generalized time-reversal (\cT), and generalized charge or chirality (\cC) operators for this system and offer a physical interpretation for its \cP\cT-, \cC-, and \cC\cP\cT-symmetries.Comment: Published version, typos fixed, a change in symbol, 1 fi

    Separable potential model for KNK^{-}N interactions at low energies

    Full text link
    The effective separable meson-baryon potentials are constructed to match the equivalent chiral amplitudes up to the second order in external meson momenta. We fit the model parameters (low energy constants) to the threshold and low energy KpK^{-}p data. In the process, the KK^{-}-proton bound state problem is solved exactly in the momentum space and the 1s level characteristics of the kaonic hydrogen are computed simultaneously with the available low energy KpK^{-}p cross sections. The model is also used to describe the πΣ\pi \Sigma mass spectrum and the energy dependence of the KnK^{-}n amplitude.Comment: 31 pages, v2 - added corrections to make it compatible with the published versio

    Big Data in Agriculture – From FOODIE towards data bio

    Get PDF
    What’s the role of Big Data in the farming ecosystem? Farmers need to measure and understand the impact of a huge amount and variety of data which drive overall quality and yield of their fields. Among those are local weather data, GPS data, ortophotos, satellite imagery, soil specifics, soil conductivity, seed, fertilizer and crop protectant specifications and many more. Being able to leverage this data for running long and short term simulations in response to “events” like changed weather, market need or other parameters is indispensable for farmers in terms of maximizing their profits. IoT (Internet of Technology) including field sensors and machinery monitoring. The experimentation in FarmTelemetry project demonstrates that one average Czech farm (i.e. around 1’000 hectares) could generate daily 20 MegaBytes of data. This could be only for Czech Republic something between 30 and 50 GB per one day. We may easily reach Terabytes of data a day from agricultural basic monitoring by sensors in Europe. Together with satellite data agriculture will need to manage extremely large amount of data. On one side there is growing whole ecosystem with a strong need to secure Big Data from different repositories and heterogeneous sources. In some cases, sharing of data could be common interest, but on other side, there are also different interests and data could help to one part of value chain to take bigger part of profit. From this reason Big data are sensitive topics and trusting of producers about data security is essential. The producers of seeds and chemicals want to maximize their business with farmers. Our team stated implementation of Big Data technologies in frame of European 7FP project FOODIE. This work currently the work continue as part of DataBio project

    Polarized photons in radiative muon capture

    Get PDF
    We discuss the measurement of polarized photons arising from radiative muon capture. The spectrum of left circularly polarized photons or equivalently the circular polarization of the photons emitted in radiative muon capture on hydrogen is quite sensitive to the strength of the induced pseudoscalar coupling constant gPg_P. A measurement of either of these quantities, although very difficult, might be sufficient to resolve the present puzzle resulting from the disagreement between the theoretical prediction for gPg_P and the results of a recent experiment. This sensitivity results from the absence of left-handed radiation from the muon line and from the fact that the leading parts of the radiation from the hadronic lines, as determined from the chiral power counting rules of heavy-baryon chiral perturbation theory, all contain pion poles.Comment: 10 pages, 6 figure

    The Axial-Vector Current in Nuclear Many-Body Physics

    Full text link
    Weak-interaction currents are studied in a recently proposed effective field theory of the nuclear many-body problem. The Lorentz-invariant effective field theory contains nucleons, pions, isoscalar scalar (σ\sigma) and vector (ω\omega) fields, and isovector vector (ρ\rho) fields. The theory exhibits a nonlinear realization of SU(2)L×SU(2)RSU(2)_L \times SU(2)_R chiral symmetry and has three desirable features: it uses the same degrees of freedom to describe the axial-vector current and the strong-interaction dynamics, it satisfies the symmetries of the underlying theory of quantum chromodynamics, and its parameters can be calibrated using strong-interaction phenomena, like hadron scattering or the empirical properties of finite nuclei. Moreover, it has recently been verified that for normal nuclear systems, it is possible to systematically expand the effective lagrangian in powers of the meson fields (and their derivatives) and to reliably truncate the expansion after the first few orders. Here it is shown that the expressions for the axial-vector current, evaluated through the first few orders in the field expansion, satisfy both PCAC and the Goldberger--Treiman relation, and it is verified that the corresponding vector and axial-vector charges satisfy the familiar chiral charge algebra. Explicit results are derived for the Lorentz-covariant, axial-vector, two-nucleon amplitudes, from which axial-vector meson-exchange currents can be deduced.Comment: 32 pages, REVTeX 4.0 with 12pt.rtx, aps.rtx, revsymb.sty, revtex4.cls, plus 14 figures; two sentences added in Summary; two references adde

    Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2_2

    Full text link
    Altermagnets are an emerging third elementary class of magnets. Unlike ferromagnets, their distinct crystal symmetries inhibit magnetization while, unlike antiferromagnets, they promote strong spin polarization in the band structure. The corresponding unconventional mechanism of timereversal symmetry breaking without magnetization in the electronic spectra has been regarded as a primary signature of altermagnetism, but has not been experimentally visualized to date. We directly observe strong time-reversal symmetry breaking in the band structure of altermagnetic RuO2_2 by detecting magnetic circular dichroism in angle-resolved photoemission spectra. Our experimental results, supported by ab initio calculations, establish the microscopic electronic-structure basis for a family of novel phenomena and functionalities in fields ranging from topological matter to spintronics, that are based on the unconventional time-reversal symmetry breaking in altermagnets

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    Band structure of CuMnAs probed by optical and photoemission spectroscopy

    Get PDF
    5 pages, 5 figures + Supplementary InformationTetragonal phase of CuMnAs progressively appears as one of the key materials for antiferromagnetic spintronics due to efficient current-induced spin-orbit torques whose existence can be directly inferred from crystal symmetry. Theoretical understanding of spintronic phenomena in this material, however, relies on the detailed knowledge of electronic structure (band structure and corresponding wave functions) which has so far been tested only to a limited extent. We show that AC permittivity (obtained from ellipsometry) and UV photoelectron spectra agree with density functional calculations. Together with the x-ray diffraction and precession electron diffraction tomography, our analysis confirms recent theoretical claim [Phys.Rev.B 96, 094406 (2017)] that copper atoms occupy lattice positions in the basal plane of the tetragonal unit cell.We acknowledge support from National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042); Grant Agency of the Czech Republic under Grant No. 15-13436S; CEDAMNF (CZ.02.1.01/0.0/0.0/15_003/0000358) of the Czech ministry of education (MŠMT) as well as its LM2015087 and LNSMLNSpin grants; Cariplo Foundation, Grant No. 2013-0726 (MAGISTER); Spanish MINECO under MAT2015-67593-P project and the ‘Severo Ochoa’ Programme (SEV-2015-0496); EU FET Open RIA Grant No. 766566; Engineering and Physical Sciences Research Council Grant No. EP/P019749/1. P.W. acknowledges support from the Royal Society through a University Research Fellowship.Peer reviewe
    corecore