2,500 research outputs found
Exploring barriers to 'Respondent driven sampling' in sex worker and drug-injecting sex worker populations in Eastern Europe
Respondent driven sampling (RDS) has been used in several counties to sample injecting drug users, sex workers (SWs) and men who have sex with men and as a means of collecting behavioural and biological health data. We report on the use of RDS in three separate studies conducted among SWs between 2004 and 2005 in the Russian Federation, Serbia, and Montenegro. Findings suggest that there are limitations associated with the use of RDS in SW populations in these regions. Findings highlight three main factors that merit further investigation as a means of assessing the feasibility and appropriateness of RDS in this high risk population: the network characteristics of SWs; the appropriate level of participant incentives; and lack of service contact. The highly controlled and hidden nature of SW organizations and weak SW social networks in the region can combine to undermine assumptions underpinning the feasibility of RDS approaches and potentially severely limit recruitment. We discuss the implications of these findings for recruitment and the use of monetary and non-monetary incentives in future RDS studies of SW populations in Eastern Europe
Asymptotic Level Density of the Elastic Net Self-Organizing Feature Map
Whileas the Kohonen Self Organizing Map shows an asymptotic level density
following a power law with a magnification exponent 2/3, it would be desired to
have an exponent 1 in order to provide optimal mapping in the sense of
information theory. In this paper, we study analytically and numerically the
magnification behaviour of the Elastic Net algorithm as a model for
self-organizing feature maps. In contrast to the Kohonen map the Elastic Net
shows no power law, but for onedimensional maps nevertheless the density
follows an universal magnification law, i.e. depends on the local stimulus
density only and is independent on position and decouples from the stimulus
density at other positions.Comment: 8 pages, 10 figures. Link to publisher under
http://link.springer.de/link/service/series/0558/bibs/2415/24150939.ht
Dimensional structural constants from chiral and conformal bosonization of QCD
We derive the dimensional non-perturbative part of the QCD effective action
for scalar and pseudoscalar meson fields by means of chiral and conformal
bosonization. The related structural coupling constants L_5 and L_8 of the
chiral lagrangian are estimated using general relations which are valid in a
variety of chiral bosonization models without explicit reference to model
parameters. The asymptotics for large scalar fields in QCD is elaborated, and
model-independent constraints on dimensional coupling constants of the
effective meson lagrangian are evaluated. We determine also the interaction
between scalar quarkonium and the gluon density and obtain the scalar
glueball-quarkonium potential.Comment: 21 pages, LaTe
3D-4D Interlinkage Of qqq Wave Functions Under 3D Support For Pairwise Bethe-Salpeter Kernels
Using the method of Green's functions within a Bethe-Salpeter framework
characterized by a pairwise qq interaction with a Lorentz-covariant 3D support
to its kernel, the 4D BS wave function for a system of 3 identical relativistic
spinless quarks is reconstructed from the corresponding 3D form which satisfies
a fully connected 3D BSE. This result is a 3-body generalization of a similar
2-body result found earlier under identical conditions of a 3D support to the
corresponding qq-bar BS kernel under Covariant Instaneity (CIA for short). (The
generalization from spinless to fermion quarks is straightforward).
To set the CIA with 3D BS kernel support ansatz in the context of
contemporary approaches to the qqq baryon problem, a model scalar 4D qqq BSE
with pairwise contact interactions to simulate the NJL-Faddeev equations is
worked out fully, and a comparison of both vertex functions shows that the CIA
vertex reduces exactly to the NJL form in the limit of zero spatial range. This
consistency check on the CIA vertex function is part of a fuller accounting for
its mathematical structure whose physical motivation is traceable to the role
of `spectroscopy' as an integral part of the dynamics.Comment: 20 pages, Latex, submitted via the account of K.-C. Yan
Generalized Hamiltonian structures for Ermakov systems
We construct Poisson structures for Ermakov systems, using the Ermakov
invariant as the Hamiltonian. Two classes of Poisson structures are obtained,
one of them degenerate, in which case we derive the Casimir functions. In some
situations, the existence of Casimir functions can give rise to superintegrable
Ermakov systems. Finally, we characterize the cases where linearization of the
equations of motion is possible
Cascades with Adjoint Matter: Adjoint Transitions
A large class of duality cascades based on quivers arising from non-isolated
singularities enjoy adjoint transitions - a phenomenon which occurs when the
gauge coupling of a node possessing adjoint matter is driven to strong coupling
in a manner resulting in a reduction of rank in the non-Abelian part of the
gauge group and a subsequent flow to weaker coupling. We describe adjoint
transitions in a simple family of cascades based on a Z2-orbifold of the
conifold using field theory. We show that they are dual to Higgsing and produce
varying numbers of U(1) factors, moduli, and monopoles in a manner which we
calculate. This realizes a large family of cascades which proceed through
Seiberg duality and Higgsing. We briefly describe the supergravity limit of our
analysis, as well as a prescription for treating more general theories. A
special role is played by N=2 SQCD. Our results suggest that additional light
fields are typically generated when UV completing certain constructions of
spontaneous supersymmetry breaking into cascades, potentially leading to
instabilities.Comment: 29 pages, a few typos fixed, improved discussion, added figure; now
there is 1 figur
Continuity, Deconfinement, and (Super) Yang-Mills Theory
We study the phase diagram of SU(2) Yang-Mills theory with one adjoint Weyl
fermion on R^3xS^1 as a function of the fermion mass m and the compactification
scale L. This theory reduces to thermal pure gauge theory as m->infinity and to
circle-compactified (non-thermal) supersymmetric gluodynamics in the limit
m->0. In the m-L plane, there is a line of center symmetry changing phase
transitions. In the limit m->infinity, this transition takes place at
L_c=1/T_c, where T_c is the critical temperature of the deconfinement
transition in pure Yang-Mills theory. We show that near m=0, the critical
compactification scale L_c can be computed using semi-classical methods and
that the transition is of second order. This suggests that the deconfining
phase transition in pure Yang-Mills theory is continuously connected to a
transition that can be studied at weak coupling. The center symmetry changing
phase transition arises from the competition of perturbative contributions and
monopole-instantons that destabilize the center, and topological molecules
(neutral bions) that stabilize the center. The contribution of molecules can be
computed using supersymmetry in the limit m=0, and via the
Bogomolnyi--Zinn-Justin (BZJ) prescription in the non-supersymmetric gauge
theory. Finally, we also give a detailed discussion of an issue that has not
received proper attention in the context of N=1 theories---the non-cancellation
of nonzero-mode determinants around supersymmetric BPS and KK
monopole-instanton backgrounds on R^3xS^1. We explain why the non-cancellation
is required for consistency with holomorphy and supersymmetry and perform an
explicit calculation of the one-loop determinant ratio.Comment: A discussion of the non-cancellation of the nonzero mode determinants
around supersymmetric monopole-instantons in N=1 SYM on R^3xS^1 is added,
including an explicit calculation. The non-cancellation is, in fact, required
by supersymmetry and holomorphy in order for the affine-Toda superpotential
to be reproduced. References have also been adde
Derivation of the Effective Chiral Lagrangian for Pseudoscalar Mesons from QCD
We formally derive the chiral Lagrangian for low lying pseudoscalar mesons
from the first principles of QCD considering the contributions from the normal
part of the theory without taking approximations. The derivation is based on
the standard generating functional of QCD in the path integral formalism. The
gluon-field integration is formally carried out by expressing the result in
terms of physical Green's functions of the gluon. To integrate over the
quark-field, we introduce a bilocal auxiliary field Phi(x,y) representing the
mesons. We then develop a consistent way of extracting the local pseudoscalar
degree of freedom U(x) in Phi(x,y) and integrating out the rest degrees of
freedom such that the complete pseudoscalar degree of freedom resides in U(x).
With certain techniques, we work out the explicit U(x)-dependence of the
effective action up to the p^4-terms in the momentum expansion, which leads to
the desired chiral Lagrangian in which all the coefficients contributed from
the normal part of the theory are expressed in terms of certain Green's
functions in QCD. Together with the existing QCD formulae for the anomaly
contributions, the present results leads to the complete QCD definition of the
coefficients in the chiral Lagrangian. The relation between the present QCD
definition of the p^2-order coefficient F_0^2 and the well-known approximate
result given by Pagels and Stokar is discussed.Comment: 16 pages in RevTex, some typos are corrected, version for publication
in Phys. Rev.
Chiral effective action with heavy quark symmetry
We derive an effective action combining chiral and heavy quark symmetry,
using approximate bosonization techniques of QCD. We explicitly show that the
heavy-quark limit is compatible with the large (number of color) limit in
the meson sector, and derive specific couplings between the light and heavy
mesons (, , ...) and their chiral partners. The relevance of this
effective action to solitons with heavy quarks describing heavy baryons is
discussed.Comment: 14 pages, SUNY-NTG-92/2
Differential Transverse Flow in Central C-Ne and C-Cu Collisions at 3.7 GeV/nucleon
Differential transverse flow of protons and pions in central C-Ne and C-Cu
collisions at a beam energy of 3.7 GeV/nucleon was measured as a function of
transverse momentum at the SKM-200-GIBS setup of JINR. In agreement with
predictions of a transversely moving thermal model, the strength of proton
differential transverse flow is found to first increase gradually and then
saturate with the increasing transverse momentum in both systems. While pions
are preferentially emitted in the same direction of the proton transverse flow
in the reaction of C-Ne, they exhibit an anti-flow to the opposote direction of
the proton transverse flow in the reaction of C-Cu due to stronger shadowing
effects of the heavier target in thr whole range of transverse momentum.Comment: 15 pages, 5 figure
- …
