218 research outputs found

    Comment on "Collective dynamics in liquid lithium, sodium, and aluminum"

    Full text link
    In a recent paper, S. Singh and K. Tankeshwar (ST), [Phys. Rev. E \textbf{67}, 012201 (2003)], proposed a new interpretation of the collective dynamics in liquid metals, and, in particular, of the relaxation mechanisms ruling the density fluctuations propagation. At variance with both the predictions of the current literature and the results of recent Inelastic X-ray Scattering (IXS) experiments, ST associate the quasielastic component of the S(Q,ω)S(Q,\omega) to the thermal relaxation, as it holds in an ordinary adiabatic hydrodynamics valid for non-conductive liquids and in the Q0Q \to 0 limit. We show here that this interpretation leads to a non-physical behaviour of different thermodynamic and transport parameters.Comment: 4 pages, 1 figure, to appear in PRE (scheduled in 1 June issue

    Heat capacity of liquids: A hydrodynamic approach

    Full text link
    We study autocorrelation functions of energy, heat and entropy densities obtained by molecular dynamics simulations of supercritical Ar and compare them with the predictions of the hydrodynamic theory. It is shown that the predicted by the hydrodynamic theory single-exponential shape of the entropy density autocorrelation functions is perfectly reproduced for small wave numbers by the molecular dynamics simulations and permits the calculation of the wavenumber-dependent specific heat at constant pressure. The estimated wavenumber-dependent specific heats at constant volume and pressure, Cv(k)C_{v}(k) and Cp(k)C_{p}(k), are shown to be in the long-wavelength limit in good agreement with the macroscopic experimental values of CvC_{v} and CpC_{p} for the studied thermodynamic points of supercritical Ar.Comment: 8 pages, 5 figure

    Acoustic attenuation in glasses and its relation with the boson peak

    Full text link
    A theory for the vibrational dynamics in disordered solids [W. Schirmacher, Europhys. Lett. {\bf 73}, 892 (2006)], based on the random spatial variation of the shear modulus, has been applied to determine the wavevector (kk) dependence of the Brillouin peak position (Ωk)\Omega_k) and width (Γk\Gamma_k), as well as the density of vibrational states (g(ω)g(\omega)), in disordered systems. As a result, we give a firm theoretical ground to the ubiquitous k2k^2 dependence of Γk\Gamma_k observed in glasses. Moreover, we derive a quantitative relation between the excess of the density of states (the boson peak) and Γk\Gamma_k, two quantities that were not considered related before. The successful comparison of this relation with the outcome of experiments and numerical simulations gives further support to the theory.Comment: To appear on PR

    Evidence of short time dynamical correlations in simple liquids

    Full text link
    We report a molecular dynamics (MD) study of the collective dynamics of a simple monatomic liquid -interacting through a two body potential that mimics that of lithium- across the liquid-glass transition. In the glassy phase we find evidences of a fast relaxation process similar to that recently found in Lennard-Jones glasses. The origin of this process is ascribed to the topological disorder, i.e. to the dephasing of the different momentum QQ Fourier components of the actual normal modes of vibration of the disordered structure. More important, we find that the fast relaxation persists in the liquid phase with almost no temperature dependence of its characteristic parameters (strength and relaxation time). We conclude, therefore, that in the liquid phase well above the melting point, at variance with the usual assumption of {\it un-correlated} binary collisions, the short time particles motion is strongly {\it correlated} and can be described via a normal mode expansion of the atomic dynamics.Comment: 7 pages, 7 .eps figs. To appear in Phys. Rev.

    Collective dynamics of liquid aluminum probed by Inelastic X-ray Scattering

    Full text link
    An inelastic X-ray scattering experiment has been performed in liquid aluminum with the purpose of studying the collective excitations at wavevectors below the first sharp diffraction peak. The high instrumental resolution (up to 1.5 meV) allows an accurate investigation of the dynamical processes in this liquid metal on the basis of a generalized hydrodynamics framework. The outcoming results confirm the presence of a viscosity relaxation scenario ruled by a two timescale mechanism, as recently found in liquid lithium.Comment: 8 pages, 7 figure

    High frequency acoustic modes in liquid gallium at the melting point

    Full text link
    The microscopic dynamics in liquid gallium (l-Ga) at melting (T=315 K) has been studied by inelastic x-ray scattering. We demonstrate the existence of collective acoustic-like modes up to wave-vectors above one half of the first maximum of the static structure factor, at variance with earlier results from inelastic neutron scattering data [F.J. Bermejo et al. Phys. Rev. E 49, 3133 (1994)]. Despite the structural (an extremely rich polymorphism and rather complex phase diagram) and electronic (mixed valence) peculiarity of l-Ga, its collective dynamics is strikingly similar to the one of Van der Walls and alkali metals liquids. This result speaks in favor of the universality of the short time dynamics in monatomic liquids rather than of system-specific dynamics.Comment: LaTex format, 11 pages, 4 EncapsulatedPostScript figure

    Inelastic X-ray scattering study of the collective dynamics in liquid sodium

    Full text link
    Inelastic X-ray scattering data have been collected for liquid sodium at T=390 K, i.e. slightly above the melting point. Owing to the very high instrumental resolution, pushed up to 1.5 meV, it has been possible to determine accurately the dynamic structure factor, S(Q,ω)S(Q,\omega), in a wide wavevector range, 1.5÷151.5 \div 15 nm1^{-1}, and to investigate on the dynamical processes underlying the collective dynamics. A detailed analysis of the lineshape of S(Q,ω)S(Q,\omega), similarly to other liquid metals, reveals the co-existence of two different relaxation processes with slow and fast characteristic timescales respectively. The present data lead to the conclusion that: i) the picture of the relaxation mechanism based on a simple viscoelastic model fails; ii) although the comparison with other liquid metals reveals similar behavior, the data do not exhibit an exact scaling law as the principle of corresponding state would predict.Comment: RevTex, 7 pages, 6 eps figures. Accepted by Phys. Rev.

    High frequency dynamics in liquid nickel: an IXS study

    Full text link
    Owing to their large relatively thermal conductivity, peculiar, non-hydrodynamic features are expected to characterize the acoustic-like excitations observed in liquid metals. We report here an experimental study of collective modes in molten nickel, a case of exceptional geophysical interest for its relevance in Earth interior science. Our result shed light on previously reported contrasting evidences: in the explored energy-momentum region no deviation from the generalized hydrodynamic picture describing non conductive fluids are observed. Implications for high frequency transport properties in metallic fluids are discussed.Comment: 6 pages, 4 figures, to appear in "Journal of Chemical Physics

    Landscapes and Fragilities

    Full text link
    The concept of fragility provides a possibility to rank different supercooled liquids on the basis of the temperature dependence of dynamic and/or thermodynamic quantities. We recall here the definitions of kinetic and thermodynamic fragility proposed in the last years and discuss their interrelations. At the same time we analyze some recently introduced models for the statistical properties of the potential energy landscape. Building on the Adam-Gibbs relation, which connects structural relaxation times to configurational entropy, we analyze the relation between statistical properties of the landscape and fragility. We call attention to the fact that the knowledge of number, energy depth and shape of the basins of the potential energy landscape may not be sufficient for predicting fragility. Finally, we discuss two different possibilities for generating strong behavior.Comment: 17 pages, 10 figures; accepted version, minor correction
    corecore