3,710 research outputs found
Reduction of Myeloperoxidase Activity by Melatonin and Pycnogenol May Contribute to their Blood Pressure Lowering Effect
Independent analysis of the orbits of Pioneer 10 and 11
Independently developed orbit determination software is used to analyze the
orbits of Pioneer 10 and 11 using Doppler data. The analysis takes into account
the gravitational fields of the Sun and planets using the latest JPL
ephemerides, accurate station locations, signal propagation delays (e.g., the
Shapiro delay, atmospheric effects), the spacecrafts' spin, and maneuvers. New
to this analysis is the ability to utilize telemetry data for spin, maneuvers,
and other on-board systematic effects. Using data that was analyzed in prior
JPL studies, the anomalous acceleration of the two spacecraft is confirmed. We
are also able to put limits on any secondary acceleration (i.e., jerk) terms.
The tools that were developed will be used in the upcoming analysis of recently
recovered Pioneer 10 and 11 Doppler data files.Comment: 22 pages, 5 figures; accepted for publication in IJMP
Partial Regularity of solutions to the Four-dimensional Navier-Stokes equations at the first blow-up time
The solutions of incompressible Navier-Stokes equations in four spatial
dimensions are considered. We prove that the two-dimensional Hausdorff measure
of the set of singular points at the first blow-up time is equal to zero.Comment: 19 pages, a comment regarding five or higher dimensional case is
added in Remark 1.3. accepted by Comm. Math. Phy
Climate bifurcation during the last deglaciation?
There were two abrupt warming events during the last deglaciation, at the start of the Bølling-Allerød and at the end of the Younger Dryas, but their underlying dynamics are unclear. Some abrupt climate changes may involve gradual forcing past a bifurcation point, in which a prevailing climate state loses its stability and the climate tips into an alternative state, providing an early warning signal in the form of slowing responses to perturbations, which may be accompanied by increasing variability. Alternatively, short-term stochastic variability in the climate system can trigger abrupt climate changes, without early warning. Previous work has found signals consistent with slowing down during the last deglaciation as a whole, and during the Younger Dryas, but with conflicting results in the run-up to the Bølling-Allerød. Based on this, we hypothesise that a bifurcation point was approached at the end of the Younger Dryas, in which the cold climate state, with weak Atlantic overturning circulation, lost its stability, and the climate tipped irreversibly into a warm interglacial state. To test the bifurcation hypothesis, we analysed two different climate proxies in three Greenland ice cores, from the Last Glacial Maximum to the end of the Younger Dryas. Prior to the Bølling warming, there was a robust increase in climate variability but no consistent slowing down signal, suggesting this abrupt change was probably triggered by a stochastic fluctuation. The transition to the warm Bølling-Allerød state was accompanied by a slowing down in climate dynamics and an increase in climate variability. We suggest that the Bølling warming excited an internal mode of variability in Atlantic meridional overturning circulation strength, causing multi-centennial climate fluctuations. However, the return to the Younger Dryas cold state increased climate stability. We find no consistent evidence for slowing down during the Younger Dryas, or in a longer spliced record of the cold climate state before and after the Bølling-Allerød. Therefore, the end of the Younger Dryas may also have been triggered by a stochastic perturbation
The Clumping Transition in Niche Competition: a Robust Critical Phenomenon
We show analytically and numerically that the appearance of lumps and gaps in
the distribution of n competing species along a niche axis is a robust
phenomenon whenever the finiteness of the niche space is taken into account. In
this case depending if the niche width of the species is above or
below a threshold , which for large n coincides with 2/n, there are
two different regimes. For the lumpy pattern emerges
directly from the dominant eigenvector of the competition matrix because its
corresponding eigenvalue becomes negative. For the lumpy
pattern disappears. Furthermore, this clumping transition exhibits critical
slowing down as is approached from above. We also find that the number
of lumps of species vs. displays a stair-step structure. The positions
of these steps are distributed according to a power-law. It is thus
straightforward to predict the number of groups that can be packed along a
niche axis and it coincides with field measurements for a wide range of the
model parameters.Comment: 16 pages, 7 figures;
http://iopscience.iop.org/1742-5468/2010/05/P0500
Processes structuring macrophyte metacommunities in Mediterranean ponds: combining novel methods to disentangle the role of dispersal limitation, species sorting and spatial scales
Aim: Metacommunity ecology is a vibrant area of research that has received increased attention in recent years, since it provides a framework to assess the underlying dispersal- and niche-based processes that create non-random and ecologically meaningful patterns in species assemblages across the landscape. Here we set out to test for the role of dispersal limitation, species sorting and shared effects in the assembly of pond macrophyte metacommunities across an extensive area within the Iberian Plateau, and to identify which traits, environmental variables and spatial scales are driving local community structure. Location: North-western Spain (Iberian Plateau). Taxon: Pond macrophytes. Methods: We established a novel combination of robust methods capable of identifying the processes and most important landscape scales involved in the assembly of communities. We used metacommunity assembly modelling and multivariate multi-scale codependence analysis (mMCA) to first estimate the relative importance of spatial and environmental effects on community structure, and then to identify significant trait–environment relationships and spatial scales. Results: Analyses showed that the greatest effects were seen for the spatial and mixed spatial and niche-based scenarios, particularly among wind-dispersed species. Thus, dispersal limitation interfered with species sorting in determining assemblage structure by hindering species’ tracking of local environmental conditions. After accounting for this, the metacommunity assembly model revealed that species’ traits were involved in determining abundance structure. mMCA identified the main trait–environment relationships (and spatial scales) as fruit size-nutrient status (~300 km) and growth form-mean pond depth (~250 km). Main conclusions: Our study suggests that dispersal limitation acted in concert with species sorting to influence the community assembly processes underlying selection for particular traits in functional niche space. Accordingly, we emphasize the need to go beyond the traditional taxonomic-based analyses of community composition and the predominant thinking of considering spatial and environmental processes as two alternative and mutually exclusive scenarios of community assembly.</p
Slower recovery in space before collapse of connected populations
Slower recovery from perturbations near a tipping point and its indirect signatures in fluctuation patterns have been suggested to foreshadow catastrophes in a wide variety of systems. Recent studies of populations in the field and in the laboratory have used time-series data to confirm some of the theoretically predicted early warning indicators, such as an increase in recovery time or in the size and timescale of fluctuations. However, the predictive power of temporal warning signals is limited by the demand for long-term observations. Large-scale spatial data are more accessible, but the performance of warning signals in spatially extended systems needs to be examined empirically. Here we use spatially extended yeast populations, an experimental system with a fold bifurcation (tipping point), to evaluate early warning signals based on spatio-temporal fluctuations and to identify a novel spatial warning indicator. We found that two leading indicators based on fluctuations increased before collapse of connected populations; however, the magnitudes of the increases were smaller than those observed in isolated populations, possibly because local variation is reduced by dispersal. Furthermore, we propose a generic indicator based on deterministic spatial patterns, which we call ‘recovery length’. As the spatial counterpart of recovery time, recovery length is the distance necessary for connected populations to recover from spatial perturbations. In our experiments, recovery length increased substantially before population collapse, suggesting that the spatial scale of recovery can provide a superior warning signal before tipping points in spatially extended systems.United States. National Institutes of Health (NIH R00 GM085279-02)United States. National Institutes of Health (NIH DP2)Alfred P. Sloan FoundationNational Science Foundation (U.S.
A Cognitive Model of an Epistemic Community: Mapping the Dynamics of Shallow Lake Ecosystems
We used fuzzy cognitive mapping (FCM) to develop a generic shallow lake
ecosystem model by augmenting the individual cognitive maps drawn by 8
scientists working in the area of shallow lake ecology. We calculated graph
theoretical indices of the individual cognitive maps and the collective
cognitive map produced by augmentation. The graph theoretical indices revealed
internal cycles showing non-linear dynamics in the shallow lake ecosystem. The
ecological processes were organized democratically without a top-down
hierarchical structure. The steady state condition of the generic model was a
characteristic turbid shallow lake ecosystem since there were no dynamic
environmental changes that could cause shifts between a turbid and a clearwater
state, and the generic model indicated that only a dynamic disturbance regime
could maintain the clearwater state. The model developed herein captured the
empirical behavior of shallow lakes, and contained the basic model of the
Alternative Stable States Theory. In addition, our model expanded the basic
model by quantifying the relative effects of connections and by extending it.
In our expanded model we ran 4 simulations: harvesting submerged plants,
nutrient reduction, fish removal without nutrient reduction, and
biomanipulation. Only biomanipulation, which included fish removal and nutrient
reduction, had the potential to shift the turbid state into clearwater state.
The structure and relationships in the generic model as well as the outcomes of
the management simulations were supported by actual field studies in shallow
lake ecosystems. Thus, fuzzy cognitive mapping methodology enabled us to
understand the complex structure of shallow lake ecosystems as a whole and
obtain a valid generic model based on tacit knowledge of experts in the field.Comment: 24 pages, 5 Figure
Singular and regular solutions of a non-linear parabolic system
We study a dissipative nonlinear equation modelling certain features of the
Navier-Stokes equations. We prove that the evolution of radially symmetric
compactly supported initial data does not lead to singularities in dimensions
. For dimensions we present strong numerical evidence supporting
existence of blow-up solutions. Moreover, using the same techniques we
numerically confirm a conjecture of Lepin regarding existence of self-similar
singular solutions to a semi-linear heat equation.Comment: 16 page
- …
