748 research outputs found

    Neural superposition and oscillations in the eye of the blowfly

    Get PDF
    Neural superposition in the eye of the blowfly Calliphora erythrocephala was investigated by stimulating single photoreceptors using corneal neutralization through water immersion. Responses in Large Monopolar Cells (LMCs) in the lamina were measured, while stimulating one or more of the six photoreceptors connected to the LMC. Responses to flashes of low light intensity on individual photoreceptors add approximately linearly at the LMC. Higher intensity light flashes produce a maximum LMC response to illumination of single photoreceptors which is about half the maximum response to simultaneous illumination of the six connecting photoreceptors. This observation indicates that a saturation can occur at a stage of synaptic transmission which precedes the change in the post-synaptic membrane potential. Stimulation of single photoreceptors yields high frequency oscillations (about 200 Hz) in the LMC potential, much larger in amplitude than produced by simultaneous stimulation of the six photoreceptors connected to the LMC. It is discussed that these oscillations also arise from a mechanism that precedes the change in the postsynaptic membrane potential.

    Metamaterial Polarization Converter Analysis: Limits of Performance

    Full text link
    In this paper we analyze the theoretical limits of a metamaterial converter that allows for linear-to- elliptical polarization transformation with any desired ellipticity and ellipse orientation. We employ the transmission line approach providing a needed level of the design generalization. Our analysis reveals that the maximal conversion efficiency for transmission through a single metamaterial layer is 50%, while the realistic re ection configuration can give the conversion efficiency up to 90%. We show that a double layer transmission converter and a single layer with a ground plane can have 100% polarization conversion efficiency. We tested our conclusions numerically reaching the designated limits of efficiency using a simple metamaterial design. Our general analysis provides useful guidelines for the metamaterial polarization converter design for virtually any frequency range of the electromagnetic waves.Comment: 10 pages, 11 figures, 2 table

    An expert system applied to earthmoving operations and equipment selection

    Get PDF
    The thesis represents an effort to assess the current and future development of expert systems relating to civil engineering problems. It describes the development and evaluation of an Expert System (ESEMPS) that is capable of advising on earth allocation and plant selection for road construction similar to that of an expert in the domain. [Continues.

    Investigation into the cause of spontaneous emulsification of a free steel droplet : validation of the chemical exchange pathway

    Get PDF
    Small Fe-based droplets have been heated to a molten phase suspended within a slag medium to replicate a partial environment within the basic oxygen furnace (BOF). The confocal scanning laser microscope (CSLM) has been used as a heating platform to interrogate the effect of impurities and their transfer across the metal/slag interface, on the emulsification of the droplet into the slag medium. The samples were then examined through X-ray computer tomography (XCT) giving the mapping of emulsion dispersion in 3D space, calculating the changing of interfacial area between the two materials, and changes of material volume due to material transfer between metal and slag. Null experiments to rule out thermal gradients being the cause of emulsification have been conducted as well as replication of the previously reported study by Assis et al.[1] which has given insights into the mechanism of emulsification. Finally chemical analysis was conducted to discover the transfer of oxygen to be the cause of emulsification, leading to a new study of a system with undergoing oxygen equilibration

    Modelling and Experimental Study of Dissimilar Arc Stud Welding of AISI 304L to AISI 316L Stainless Steel

    Get PDF
    This paper has aimed to try and establish a successful weld joint between AISI 304L stainless steel as a stud and AISI 316L stainless steel as a plate by using an arc stud welding process. The effect of different current and time welding on the torque results was experimentally studied, by using three-level of each process parameter. The post-weld heat treatment (PWHT) was carried out on the optimum sample of torque, to study the effect of PWHT on mechanical properties (torque and hardness) and microstructure of the welding zone. In the present work, A 3-D finite element model was developed by using ANSYS software version 18 to analyze the influence of time and current welding on the temperature distribution and residual stresses of the resultant welded joints. A transient thermal model was built to predict the temperature distribution whereas the residual stresses were determined by using a static structural model. The PWHT has been used to reduce the amount of residual stresses and enhance the mechanical properties of the welded joint. The micro-hardness based on the Vickers test and the microstructure of welded specimens with and without PWHT have been investigated. The simulation results reveal that the generated temperature and the residual stress is strongly affected by the time and current welding. The mechanical test results indicated that the PWHT prompted an improvement in the hardness values

    Modelling and Experimental Study of Dissimilar Arc Stud Welding of AISI 304L to AISI 316L Stainless Steel

    Get PDF
    This paper has aimed to try and establish a successful weld joint between AISI 304L stainless steel as a stud and AISI 316L stainless steel as a plate by using an arc stud welding process. The effect of different current and time welding on the torque results was experimentally studied, by using three-level of each process parameter. The post-weld heat treatment (PWHT) was carried out on the optimum sample of torque, to study the effect of PWHT on mechanical properties (torque and hardness) and microstructure of the welding zone. In the present work, A 3-D finite element model was developed by using ANSYS software version 18 to analyze the influence of time and current welding on the temperature distribution and residual stresses of the resultant welded joints. A transient thermal model was built to predict the temperature distribution whereas the residual stresses were determined by using a static structural model. The PWHT has been used to reduce the amount of residual stresses and enhance the mechanical properties of the welded joint. The micro-hardness based on the Vickers test and the microstructure of welded specimens with and without PWHT have been investigated. The simulation results reveal that the generated temperature and the residual stress is strongly affected by the time and current welding. The mechanical test results indicated that the PWHT prompted an improvement in the hardness values

    Detailed modelling and simulation of different DC motor types for research and educational purposes

    Get PDF
    The devastating impact of Covid-19 pandemic accelerated the shift to e-learning in the higher education. Particularly in the electrical machines courses, that often include laboratory experiments. However, no detailed models of DC motors, developed in MATLAB/Simulink, were reported in literature.  Hence, in this paper, a virtual laboratory consist of models of DC motors was built for the first time. The proposed models are easy to use and modify, and allow all machines’ parameters to be altered for students to replicate easily to support and enhance the learning process of electrical machines courses. Consequently, the developed models are effective tools for educational and research purposes. Dynamic models of DC motors were developed using MATLAB/Simulink, namely separately excited, permanent magnet, shunt-connected and series-connected DC motors. Two different approaches for modelling were proposed, the block diagram representation and Simscape based models. The two modelling methods were validated against the built-in DC machine model. The proposed models are easy to use and modify, and allow all machines’ parameters to be altered for monitoring and comparison purposes. Consequently, the developed models are effective tools for research and educational purposes

    Detailed modelling and simulation of single-phase transformers for research and educational purposes

    Get PDF
    COVID-19 pandemic, despite its devastating impact, accelerated the shift to e-learning in higher education. Particularly in the electrical machines courses, that often include laboratory experiments. However, no detailed models of transformers, developed in Simulink/MATLAB®, were reported in the literature. Hence, in this paper, a virtual laboratory consists of models of single-phase transformers was built for the first time. The proposed models are easy to use and modify, and allow all machines’ parameters to be altered for students to replicate easily to support and enhance the learning process of electrical machines courses. Consequently, the developed models are effective tools for educational and research purposes. Dynamic models of single-phase, two-winding, transformers and step-up and step-down auto-transformers were developed using Simulink/MATLAB®. Two different approaches for modelling were proposed, the block diagram representation and Simscape based models. The two modelling methods were validated against the built-in transformer model. The developed models have been successfully integrated into electrical engineering courses at Middle Technical University, Baghdad, Iraq. Therefore, all developed models are freely available online at a dedicated repository

    Ceramic on ceramic bearing fractures in total hip arthroplasty : an analysis of data from the national joint registry

    Get PDF
    Aims: Ceramic-on-ceramic (CoC) bearings in total hip arthroplasty (THA) are commonly used but concerns exist regarding ceramic fracture. This study aims to report the risk of revision for fracture of modern CoC bearings and identify factors that might influence this risk, using data from the National Joint Registry (NJR). Patients and Methods: We analysed data on 111,681 primary CoC THA’s and 182 linked revisions for bearing fracture recorded in NJR. We used implant codes to identify ceramic bearing composition and generated Kaplan-Meier estimates for implant survivorship. Logistic regression analyses were performed for implant size and patient specific variables to determine any associated risks for revision. Results: 99.8% of bearings were CeramTec Biolox® products. Revisions for fracture were linked to 7 of 79,442 (0.009%) Biolox® Delta heads, 38 of 31,982 (0.119%) Biolox® Forte heads, 101 of 80,170 (0.126%) Biolox® Delta liners and 35 of 31,258 (0.112%) Biolox® Forte liners. Regression analysis of implant size revealed smaller heads had significantly higher odds of fracture (χ2=68.0, p<0.0001). The highest fracture risk were observed in the 28mm Biolox® Forte subgroup (0.382%). There were no fractures in the 40mm head group for either ceramic type. Liner thickness was not predictive of fracture (p=0.67). BMI was independently associated with revision for both head fractures (OR 1.09 per unit increase, p=0.031) and liner fractures (OR 1.06 per unit increase, p=0.006). Conclusions: We report the largest study of CoC bearing fractures to date. The risk of revision for CoC bearing fracture is very low, however previous studies have underestimated this risk. There is good evidence that the latest generation of ceramic has greatly reduced the odds of head fracture but not of liner fracture. Small head size and high patient BMI are associated with an increased risk of ceramic bearing fracture
    corecore