114,729 research outputs found

    Spin-one bosons in low dimensional Mott insulating states

    Full text link
    We analyze the strong coupling limit of spin-one bosons in low dimensional Mott insulating states. In 1D lattices, for an odd number of bosons per site (N0N_0), the ground state is a dimerized valence bond crystal state with a two-fold degeneracy; the low lying elementary spin excitations carry spin one. For an even number of bosons per site, the ground state is a nondegenerate spin singlet Mott state. We also argue that in a square lattice in a quantum disordered limit the ground states should be dimerized valence bond crystals for an odd integer N0N_0. Finally, we briefly report results for non-integer numbers of bosons per site in one-dimensional lattices.Comment: 5 pages; discussions on non-integer case have been shortene

    Chosen-Plaintext Cryptanalysis of a Clipped-Neural-Network-Based Chaotic Cipher

    Get PDF
    In ISNN'04, a novel symmetric cipher was proposed, by combining a chaotic signal and a clipped neural network (CNN) for encryption. The present paper analyzes the security of this chaotic cipher against chosen-plaintext attacks, and points out that this cipher can be broken by a chosen-plaintext attack. Experimental analyses are given to support the feasibility of the proposed attack.Comment: LNCS style, 7 pages, 1 figure (6 sub-figures

    Transition Metal-Ethylene Complexes as High-Capacity Hydrogen Storage Media

    Get PDF
    From first-principles calculations, we predict that a single ethylene molecule can form a stable complex with two transition metals (TM) such as Ti. The resulting TM-ethylene complex then absorbs up to ten hydrogen molecules, reaching to gravimetric storage capacity of 14 wt%. Dimerization, polymerizations and incorporation of the TM-ethylene complexes in nanoporous carbon materials have been also discussed. Our results are quite remarkable and open a new approach to high-capacity hydrogen storage materials discovery.Comment: 5 pages, 4 figures, additional content, Phys. Rev. Lett. in pres

    Solution space heterogeneity of the random K-satisfiability problem: Theory and simulations

    Full text link
    The random K-satisfiability (K-SAT) problem is an important problem for studying typical-case complexity of NP-complete combinatorial satisfaction; it is also a representative model of finite-connectivity spin-glasses. In this paper we review our recent efforts on the solution space fine structures of the random K-SAT problem. A heterogeneity transition is predicted to occur in the solution space as the constraint density alpha reaches a critical value alpha_cm. This transition marks the emergency of exponentially many solution communities in the solution space. After the heterogeneity transition the solution space is still ergodic until alpha reaches a larger threshold value alpha_d, at which the solution communities disconnect from each other to become different solution clusters (ergodicity-breaking). The existence of solution communities in the solution space is confirmed by numerical simulations of solution space random walking, and the effect of solution space heterogeneity on a stochastic local search algorithm SEQSAT, which performs a random walk of single-spin flips, is investigated. The relevance of this work to glassy dynamics studies is briefly mentioned.Comment: 11 pages, 4 figures. Final version as will appear in Journal of Physics: Conference Series (Proceedings of the International Workshop on Statistical-Mechanical Informatics, March 7-10, 2010, Kyoto, Japan
    • …
    corecore