4,507 research outputs found

    Coupling of shells in a carbon nanotube quantum dot

    Full text link
    We systematically study the coupling of longitudinal modes (shells) in a carbon nanotube quantum dot. Inelastic cotunneling spectroscopy is used to probe the excitation spectrum in parallel, perpendicular and rotating magnetic fields. The data is compared to a theoretical model including coupling between shells, induced by atomically sharp disorder in the nanotube. The calculated excitation spectra show good correspondence with experimental data.Comment: 8 pages, 4 figure

    Magnetic-Field Dependence of Tunnel Couplings in Carbon Nanotube Quantum Dots

    Get PDF
    By means of sequential and cotunneling spectroscopy, we study the tunnel couplings between metallic leads and individual levels in a carbon nanotube quantum dot. The levels are ordered in shells consisting of two doublets with strong- and weak-tunnel couplings, leading to gate-dependent level renormalization. By comparison to a one- and two-shell model, this is shown to be a consequence of disorder-induced valley mixing in the nanotube. Moreover, a parallel magnetic field is shown to reduce this mixing and thus suppress the effects of tunnel renormalization.Comment: 5 pages, 3 figures; revised version as publishe

    Thermal structure and exhumation history of the Lesser Himalaya in central Nepal

    Get PDF
    The Lesser Himalaya (LH) consists of metasedimentary rocks that have been scrapped off from the underthrusting Indian crust and accreted to the mountain range over the last ~20 Myr. It now forms a significant fraction of the Himalayan collisional orogen. We document the kinematics and thermal metamorphism associated with the deformation and exhumation of the LH, combining thermometric and thermochronological methods with structural geology. Peak metamorphic temperatures estimated from Raman spectroscopy of carbonaceous material decrease gradually from 520°–550°C below the Main Central Thrust zone down to less than 330°C. These temperatures describe structurally a 20°–50°C/km inverted apparent gradient. The Ar muscovite ages from LH samples and from the overlying crystalline thrust sheets all indicate the same regular trend; i.e., an increase from about 3–4 Ma near the front of the high range to about 20 Ma near the leading edge of the thrust sheets, about 80 km to the south. This suggests that the LH has been exhumed jointly with the overlying nappes as a result of overthrusting by about 5 mm/yr. For a convergence rate of about 20 mm/yr, this implies underthrusting of the Indian basement below the Himalaya by about 15 mm/yr. The structure, metamorphic grade and exhumation history of the LH supports the view that, since the mid-Miocene, the Himalayan orogen has essentially grown by underplating, rather than by frontal accretion. This process has resulted from duplexing at a depth close to the brittle-ductile transition zone, by southward migration of a midcrustal ramp along the Main Himalayan Thrust fault, and is estimated to have resulted in a net flux of up to 150 m^2/yr of LH rocks into the Himalayan orogenic wedge. The steep inverse thermal gradient across the LH is interpreted to have resulted from a combination of underplating and post metamorphic shearing of the underplated units

    Phase correlation of laser waves with arbitrary frequency spacing

    Full text link
    The theoretically predicted correlation of laser phase fluctuations in Lambda-type interaction schemes is experimentally demonstrated. We show, that the mechanism of correlation in a Lambda scheme is restricted to high frequency noise components, whereas in a double-Λ\Lambda scheme, due to the laser phase locking in closed-loop interaction, it extends to all noise frequencies. In this case the correlation is weakly sensitive to coherence losses. Thus the double-Lambda scheme can be used to correlate e.m. fields with carrier frequency differences beyond the GHz regime.Comment: 4 pages, 4 figure

    Dynamic modelling of lettuce transpiration for water status monitoring

    Get PDF
    Real-time information on the plant water status is an important prerequisite for the precision irrigation management of crops. The plant transpiration has been shown to provide a good indication of its water status. In this paper, a novel plant water status monitoring framework based on the transpiration dynamics of greenhouse grown lettuce plants is presented. Experimental results indicated that lettuce plants experiencing adequate water supply transpired at a higher rate compared to plants experiencing a shortage in water supply. A data-driven model for predicting the transpiration dynamics of the plants was developed using a system identification approach. Results indicated that a second order discrete-time transfer function model with incoming radiation, vapour pressure deficit, and leaf area index as inputs sufficiently explained the dynamics with an average coefficient of determination of . The parameters of the model were updated online and then applied in predicting the transpiration dynamics of the plants in real-time. The model predicted dynamics closely matched the measured values when the plants were in a predefined water status state. The reverse was the case when there was a significant change in the water status state. The information contained in the model residuals (measured transpiration – model predicted transpiration) was then exploited as a means of inferring the plant water status. This framework provides a simple and intuitive means of monitoring the plant water status in real-time while achieving a sensitivity similar to that of stomatal conductance measurements. It can be applied in regulating the water deficit of greenhouse grown crops, with specific advantages over other available techniques

    Nonnegatively curved homogeneous metrics obtained by scaling fibers of submersions

    Full text link
    We consider invariant Riemannian metrics on compact homogeneous spaces G/H where an intermediate subgroup K between G and H exists, so that the homogeneous space G/H is the total space of a Riemannian submersion. We study the question as to whether enlarging the fibers of the submersion by a constant scaling factor retains the nonnegative curvature in the case that the deformation starts at a normal homogeneous metric. We classify triples of groups (H,K,G) where nonnegative curvature is maintained for small deformations, using a criterion proved by Schwachh\"ofer and Tapp. We obtain a complete classification in case the subgroup H has full rank and an almost complete classification in the case of regular subgroups.Comment: 23 pages; minor revisions, to appear in Geometriae Dedicat

    Hawking Radiation from Feynman Diagrams

    Get PDF
    The aim of this letter is to clarify the relationships between Hawking radiation and the scattering of light by matter falling into a black hole. To this end we analyze the S-matrix elements of a model composed of a massive infalling particle (described by a quantized field) and the radiation field. These fields are coupled by current-current interactions and propagate in the Schwarzschild geometry. As long as the photons energy is much smaller than the mass of the infalling particle, one recovers Hawking radiation since our S-matrix elements identically reproduce the Bogoliubov coefficients obtained by treating the trajectory of the infalling particle classically. But after a brief period, the energy of the `partners' of Hawking photons reaches this mass and the production of thermal photons through these interactions stops. The implications of this result are discussed.Comment: 12 pages, revtex, no figure

    Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots

    Get PDF
    We study low-temperature transport through carbon nanotube quantum dots in the Coulomb blockade regime coupled to niobium-based superconducting leads. We observe pronounced conductance peaks at finite source-drain bias, which we ascribe to elastic and inelastic cotunneling processes enhanced by the coherence peaks in the density of states of the superconducting leads. The inelastic cotunneling lines display a marked dependence on the applied gate voltage which we relate to different tunneling-renormalizations of the two subbands in the nanotube. Finally, we discuss the origin of an especially pronounced sub-gap structure observed in every fourth Coulomb diamond

    The Rotating Quantum Vacuum

    Get PDF
    We derive conditions for rotating particle detectors to respond in a variety of bounded spacetimes and compare the results with the folklore that particle detectors do not respond in the vacuum state appropriate to their motion. Applications involving possible violations of the second law of thermodynamics are briefly addressed.Comment: Plain TeX, 10 pages (to appear in PRD

    Aspirin for prophylactic use in the primary prevention of cardiovascular disease and cancer : a systematic review and overview of reviews

    Get PDF
    Background: Prophylactic aspirin has been considered to be beneficial in reducing the risks of heart disease and cancer. However, potential benefits must be balanced against the possible harm from side effects, such as bleeding and gastrointestinal (GI) symptoms. It is particularly important to know the risk of side effects when aspirin is used as primary prevention - that is when used by people as yet free of, but at risk of developing, cardiovascular disease (CVD) or cancer. In this report we aim to identify and re-analyse randomised controlled trials (RCTs), systematic reviews and meta-analyses to summarise the current scientific evidence with a focus on possible harms of prophylactic aspirin in primary prevention of CVD and cancer. Objectives: To identify RCTs, systematic reviews and meta-analyses of RCTs of the prophylactic use of aspirin in primary prevention of CVD or cancer. To undertake a quality assessment of identified systematic reviews and meta-analyses using meta-analysis to investigate study-level effects on estimates of benefits and risks of adverse events; cumulative meta-analysis; exploratory multivariable meta-regression; and to quantify relative and absolute risks and benefits. Methods: We identified RCTs, meta-analyses and systematic reviews, and searched electronic bibliographic databases (from 2008 September 2012) including MEDLINE, Cochrane Central Register of Controlled Trials, Database of Abstracts of Reviews of Effects, NHS Centre for Reviews and Dissemination, and Science Citation Index. We limited searches to publications since 2008, based on timing of the most recent comprehensive systematic reviews. Results: In total, 2572 potentially relevant papers were identified and 27 met the inclusion criteria. Benefits of aspirin ranged from 6% reduction in relative risk (RR) for all-cause mortality [RR 0.94, 95% confidence interval (CI) 0.88 to 1.00] and 10% reduction in major cardiovascular events (MCEs) (RR 0.90, 95% CI 0.85 to 0.96) to a reduction in total coronary heart disease (CHD) of 15% (RR 0.85, 95% CI 0.69 to 1.06). Reported pooled odds ratios (ORs) for total cancer mortality ranged between 0.76 (95% CI 0.66 to 0.88) and 0.93 (95% CI 0.84 to 1.03). Inclusion of the Women's Health Study changed the estimated OR to 0.82 (95% CI 0.69 to 0.97). Aspirin reduced reported colorectal cancer (CRC) incidence (OR 0.66, 95% CI 0.90 to 1.02). However, including studies in which aspirin was given every other day raised the OR to 0.91 (95% CI 0.74 to 1.11). Reported cancer benefits appeared approximately 5 years from start of treatment. Calculation of absolute effects per 100,000 patient-years of follow-up showed reductions ranging from 33 to 46 deaths (all-cause mortality), 60-84 MCEs and 47-64 incidents of CHD and a possible avoidance of 34 deaths from CRC. Reported increased RRs of adverse events from aspirin use were 37% for GI bleeding (RR 1.37, 95% CI 1.15 to 1.62), between 54% (RR 1.54, 95% CI 1.30 to 1.82) and 62% (RR 1.62, 95% CI 1.31 to 2.00) for major bleeds, and between 32% (RR 1.32, 95% CI 1.00 to 1.74) and 38% (RR 1.38, 95% CI 1.01 to 1.82) for haemorrhagic stroke. Pooled estimates of increased RR for bleeding remained stable across trials conducted over several decades. Estimates of absolute rates of harm from aspirin use, per 100,000 patient-years of follow-up, were 99-178 for non-trivial bleeds, 46-49 for major bleeds, 68-117 for GI bleeds and 8-10 for haemorrhagic stroke. Meta-analyses aimed at judging risk of bleed according to sex and in individuals with diabetes were insufficiently powered for firm conclusions to be drawn. Limitations: Searches were date limited to 2008 because of the intense interest that this subject has generated and the cataloguing of all primary research in so many previous systematic reviews. A further limitation was our potential over-reliance on study-level systematic reviews in which the person-years of follow-up were not accurately ascertainable. However, estimates of number of events averted or incurred through aspirin use calculated from data in study-level meta-analyses did not differ substantially from estimates based on individual patient data-level meta-analyses, for which person-years of follow-up were more accurate (although based on less-than-complete assemblies of currently available primary studies). Conclusions: We have found that there is a fine balance between benefits and risks from regular aspirin use in primary prevention of CVD. Effects on cancer prevention have a long lead time and are at present reliant on post hoc analyses. All absolute effects are relatively small compared with the burden of these diseases. Several potentially relevant ongoing trials will be completed between 2013 and 2019, which may clarify the extent of benefit of aspirin in reducing cancer incidence and mortality. Future research considerations include expanding the use of IPD meta-analysis of RCTs by pooling data from available studies and investigating the impact of different dose regimens on cardiovascular and cancer outcomes
    corecore