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Abstract 31 

Real-time information on the plant water status is an important prerequisite for the precision 32 

irrigation management of crops. The plant transpiration has been shown to provide a good 33 

indication of its water status. In this paper, a novel plant water status monitoring framework 34 

based on the transpiration dynamics of greenhouse grown lettuce plants is presented. 35 

Experimental results indicated that lettuce plants experiencing adequate water supply 36 

transpired at a higher rate compared to plants experiencing a shortage in water supply. A 37 

data-driven model for predicting the transpiration dynamics of the plants was developed 38 

using a system identification approach.  Results indicated that a second order discrete-time 39 

transfer function model with incoming radiation, vapour pressure deficit, and leaf area index 40 

as inputs sufficiently explained the dynamics with an average coefficient of determination of 41 

𝑅𝑇
2 = 0.93 ± 0.04. The parameters of the model were updated online and then applied in 42 

predicting the transpiration dynamics of the plants in real-time. The model predicted 43 

dynamics closely matched the measured values when the plants were in a predefined water 44 

status state. The reverse was the case when there was a significant change in the water 45 

status state. The information contained in the model residuals (measured transpiration – 46 

model predicted transpiration) was then exploited as a means of inferring the plant water 47 

status. This framework provides a simple and intuitive means of monitoring the plant water 48 

status in real-time while achieving a sensitivity similar to that of stomatal conductance 49 

measurements. It can be applied in regulating the water deficit of greenhouse grown crops, 50 

with specific advantages over other available techniques.  51 

Keywords: Plant water status; Transpiration; Modelling; System Identification; Irrigation 52 
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1 Introduction 57 

The precise determination of irrigation water requirement and timing is a precursor to the 58 

successful precision irrigation management of crops (Kochler et al., 2007). This requires a 59 

knowledge of the plant water status in real-time which can then guide in arriving at optimal 60 

irrigation scheduling decisions. 61 

Contact monitoring methods such as measurements of stomatal conductance, sap-flow, and 62 

leaf turgor pressure have been shown to provide an adequate indication of plant water 63 

status. However, these methods are plant-based, requiring large replication to provide an 64 

indication of water status at crop level. They also require technical expertise for 65 

implementation, laborious and difficult to deploy as a real-time monitoring tool (Jones, 2004). 66 

Non-contact measurement of plant canopy temperature (𝑇𝑐) which is normalized using a 67 

crop water stress index (CWSI) also provides a good indication of plant water status (Ben-68 

Gal et al., 2009). Its application as a monitoring tool in commercial crop production is 69 

however limited because of the need to know the baseline temperatures which are required 70 

for its computation under the same environmental conditions as 𝑇𝑐 (Maes and Steppe, 71 

2012). Non-contact monitoring tools which can provide a real-time indication of the plant 72 

water status at crop level, with non- laborious implementation, and minimal instrumentation 73 

and computation requirements  will therefore be beneficial in implementing precision 74 

irrigation management in commercial crop production (Adeyemi et al., 2017).  75 

The plant transpiration is perhaps the best indication of plant water status (Jones, 2008; 76 

Maes and Steppe, 2012). Plants experiencing unrestricted water supply (well-watered 77 

plants) have been shown to transpire at a higher rate when compared to plants experiencing 78 

a shortage in water supply (Ben-Gal et al., 2010; Villarreal-Guerrero et al., 2012). This is due 79 

to the regulation of water loss by the plant's stomates with the stomates of well-watered 80 

plants opening up more in response to atmospheric demand. The stomates of plants 81 

experiencing water shortage open up less in response to atmospheric demand in order to 82 
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limit water loss (Blonquist et al., 2009). Therefore, the water status of a plant can be inferred 83 

from measurements of its transpiration rate.  84 

Traditionally, the knowledge of crop transpiration over time has been applied in the dynamic 85 

control of water supply to greenhouse crops (Daniel et al., 2013). This is usually in form of 86 

an off/off control strategy in which irrigation is applied after the accumulation of a set point 87 

cumulative transpiration amount (Davis and Dukes, 2010). These computer-controlled 88 

irrigation systems make use of mechanistic or empirical models to estimate crop 89 

transpiration based on environmental and physiological factors (Barnard and Bauerle, 2015).  90 

Several models have been developed for the estimation of transpiration from greenhouse 91 

cultivated ornamental and vegetable crops (Baptista et al., 2005; Fatnassi et al., 2004; Jolliet 92 

and Bailey, 1992; Montero et al., 2001). Most of these models are based on the thermal 93 

energy balance equation of the plant canopy and are similar to the Penman-Monteith (PM) 94 

equation (Howell and Evett, 2004). These models are able to account for the effect of actual 95 

water supply on transpiration through the incorporation of a stomatal resistance component. 96 

The stomatal resistance is expressed as a function of several factors including solar 97 

radiation, leaf vapour pressure deficit, leaf temperature, 𝐶𝑂2 concentration, 98 

photosynthetically active radiation, leaf water potential etc. (Kochler et al., 2007). The 99 

development of these models requires the calibration of several hard-to-measure 100 

parameters which limit their practical application as an irrigation monitoring tool (Villarreal-101 

Guerrero et al., 2012). Furthermore, these models are unable to account for the time varying 102 

nature of the plant system, as their parameters are assumed to remain constant once 103 

identified. The response of a plant will vary as a result of growth, biotic and abiotic factors, 104 

and adaptation processes (Boonen et al., 2000).  105 

Data-driven modelling approaches based on measured input-output data of a process have 106 

been shown to provide robust approximations of various biological processes and often 107 

require fewer input parameters when compared to mechanistic models (Navarro-Hellín et al., 108 

2016). The later is difficult to implement as a perfect knowledge of the physical process 109 
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under consideration is often required (Bennis et al., 2008). Sánchez et al. (2012) applied a 110 

system identification approach in predicting the transpiration rate of a greenhouse grown 111 

tomato crop. Their approach showed promise in accounting to the time-varying plant 112 

response through an online update of the model parameters. Speetjens et al. (2009) also 113 

applied an extended Kalman filtering algorithm for the online estimation of model parameters 114 

for predicting the transpiration of a greenhouse grown crop. Both studies reported improved 115 

prediction of plant transpiration rates when compared to values predicted by mechanistic 116 

models. The modelling approach presented in both studies are data-driven making their 117 

practical application as an irrigation monitoring tool viable. They also do not require the 118 

stomatal behaviour to be modelled explicitly as it is accounted for in the online parameter 119 

estimation process.  120 

System identification is a data-driven modelling approach which is applied in modelling 121 

dynamic systems (Chen and Chang, 2008). It has been successfully applied in simplifying 122 

and modelling complex environmental and biological processes(Taylor et al., 2007; Young, 123 

2006), predicting time-varying biological responses (Kirchsteiger et al., 2011; Quanten et al., 124 

2006)  and in many other irrigation decision support applications (Delgoda et al., 2016; 125 

Lozoya et al., 2016). It is extensively applied as part of the fault detection methodologies in 126 

the advanced process control industry (Young, 2006). During fault detection, a system 127 

identification approach is used to build a dynamic model of a process in a known healthy 128 

state. The output predicted by the model can then be compared to the actual real-time 129 

measurements from the process. The parameters of the model can also be updated as new 130 

data is acquired from the process (Gil et al., 2015).  This methodology, which has proven to 131 

be successful in the process control industry, can be adapted and applied as part of an 132 

adaptive decision support system for irrigation monitoring (Adeyemi et al., 2017). 133 

The objectives of this study are to investigate if the transpiration rates of greenhouse grown 134 

lettuce plants (Lactuca sativa) maintained at different water deficit levels will differ. This will 135 

provide a justification for the application of this measurement as a plant water status 136 
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monitoring tool. A system identification approach is thereafter applied in developing a model 137 

of the transpiration dynamics and predicting the transpiration rate of these plants. Finally, the 138 

predicted transpiration rate is used as a tool for monitoring the water status of the lettuce 139 

plants and real-time detection of deviations from a defined water status state. 140 

2 Background 141 

2.1 Plant transpiration 142 

Plant transpiration can be described by the Penman-Monteith equation (Monteith, 1973). 143 

This equation and other transpiration models derived from it specify that the transpiration 144 

(𝑇𝑝(𝑔𝑚−2𝑚𝑖𝑛−1)) is dependent on the incoming solar radiation (𝑅𝑠𝑤(𝑊𝑚−2)) and the vapour 145 

pressure deficit of the ambient air (∆(𝑘𝑃𝑎)). This is expressed as  146 

𝑇𝑝 = 𝑅𝑠𝑤𝐶𝐴 +  ∆𝐶𝐵                                                                                                                                               (1) 147 

Where the coefficients 𝐶𝐴 and 𝐶𝐵 are crop dependent parameters. 148 

Baille et al. (1994) noted that the coefficient 𝐶𝐵 is a function of the plant leaf area index (LAI), 149 

and it adopts different values during the day due to oscillations in stomatal resistance. 150 

2.2 System identification 151 

System identification is applied in constructing mathematical models of dynamic systems 152 

based on the incoming time-series of input (𝑢(𝑡)) and output (𝑦(𝑡)) data. The goal is to infer 153 

the relationship between the sampled input/output data. During system identification, the 154 

model structure is first identified using objective methods of time series analysis based on a 155 

given general class of time-series models (here, linear discrete time transfer functions). The 156 

resulting model must be able to explain the structure of the observed data. System 157 

identification is used to simultaneously linearize and reduce model complexity, so exposing 158 

its ‘dominant modes’ of dynamic behaviour.  159 

In this study, the identification process was conducted based on prior knowledge of the plant 160 

transpiration process as shown in equation 1. The vapour pressure deficit and incoming 161 
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radiation were selected as climatic input, and the LAI was selected as crop growth input. The 162 

identification of the model structure is considered the first step of the identification problem in 163 

the present study. An online estimation algorithm is thereafter implemented to update the 164 

model parameters based on the real-time data obtained from the process. 165 

In this way, it is possible to detect the changes in the dynamics of the system thus 166 

accounting for the time-varying nature of the plant system. 167 

The linear discrete-time transfer function is written as 168 

𝑦(𝑡) =  
𝐵1(𝐿)

𝐴(𝐿)
𝑈1(𝑡 − 𝛿1) + ⋯ +

𝐵𝑘(𝐿)

𝐴(𝐿)
𝑈𝑘(𝑡 − 𝛿𝑘) + 𝑒(𝑡); 𝑒~𝑊𝑁(0, 𝜎𝑒

2)                                           (2) 169 

Where 𝑦(𝑡) is the output (transpiration rate), 𝑈𝑖(𝑡) (𝑖 = 1,2, … . . , 𝐾) are a set of 𝐾 inputs that 170 

affect the output (incoming radiation, vapour pressure deficit), 𝛿𝑖(𝑖 = 1,2, … . , 𝐾) are the 171 

delays associated with each input. 172 

In equation 2, 173 

𝐴(𝐿) = 1 + 𝑎1𝐿 + ⋯ + 𝑎𝑛𝐿𝑛                                                                                                                             (3) 174 

𝐵(𝐿) =  𝑏0 + 𝑏1𝐿 + ⋯ + 𝑏𝑚𝐿𝑚                                                                                                                                175 

𝐴(𝐿) and 𝐵(𝐿) are polynomials of the order 𝑛 and 𝑚 respectively. The backshift operator 𝐿 is 176 

such that 𝐿𝑗𝑦𝑡 = 𝑦𝑡−𝑗. 𝑎𝑖(𝑖 = 1,2, … . . , 𝑛) and 𝑏𝑗(𝑗 = 1,2, … . . . , 𝑚) are coefficients of the 177 

polynomials 𝐴(𝐿) and 𝐵(𝐿). They represent the unknown parameters that are to be 178 

identified. The identified model is defined by the triad [𝑛, 𝑚𝑖, 𝛿𝑖], where 𝑛 is the number of 179 

denominator parameters; indicating the model order, and 𝑚𝑖 is the number of numerator 180 

parameters associated with each input. 𝛿𝑖 is defined earlier. 181 

The identification process was conducted using the refined instrumental variable algorithm 182 

(Taylor et al., 2007) implemented in the Captain toolbox (Young et al., 2007) on the 183 

MATLAB® software. 184 

 185 
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2.3 Plant water status monitoring framework 186 

The plant water status monitoring algorithm proposed in this paper is data-driven. The 187 

algorithm is founded on an estimated dynamic model of the plant transpiration. The model is 188 

identified as a time domain model and the parameters of the model are identified online from 189 

the real-time measurements of input-output data.  The water status monitoring principle is 190 

based on a premise that the transpiration dynamics of a plant will vary as a function of the 191 

prevailing climatic conditions and its water status. A model of the plant is built at a known 192 

water status state and predictions from this model is then compared to real-time output data 193 

obtained from the plant. A schematic illustration of the algorithm is presented in Figure 1. 194 

 195 

Figure 1: Schematic illustration of the proposed water status monitoring framework 196 

The decision-making module assumes that the residuals (measured transpiration – model 197 

predicted transpiration) generated from a healthy mode of the process i.e. non-significant 198 

deviation in water status state will conform to an established statistical distribution. A change 199 

in this distribution will indicate a significant deviation in the water status state of the plant. 200 
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When there is a significant change in plant water status, the model obtained during a 201 

particular water status state is unable to predict the observed plant response. This causes 202 

the difference between the measured and predicted transpiration rate i.e. the magnitude of 203 

the residuals to increase. The decision-making algorithm is further explained in section 2.3.1 204 

2.3.1 Decision-making algorithm 205 

During system identification, the residuals obtained between the measured and modelled 206 

output is assumed to be a normally distributed Gaussian sequence (Taylor et al., 2007). For 207 

a properly defined model identified during a known process state, the residuals obtained 208 

between the measured and predicted output will also conform to this distribution. However, 209 

when there is a significant change in the process state, the distribution of the residuals 210 

obtained as a function of the predicted output will deviate from the distribution obtained 211 

during the modelling phase. 212 

A Gaussian Mixture Model (GMM) can be applied in modelling the distribution of the 213 

residuals obtained during the identification process. The GMM assumes we have 𝑘 normal 214 

distributions to describe the data {𝑁(𝜇1, 𝜎1) … … 𝑁(𝜇𝑘 , 𝜎𝑘)} and estimates the parameters for 215 

those individual distributions that when combined best describes the data (Reynolds, 2015). 216 

The probability of observing a value 𝑋𝑛
𝑗
 for a specific data point is expressed as (Reynolds, 217 

2015) 218 

𝑝(𝑋𝑛
𝑗
) =  ∑ 𝜋𝑘ℵ(

𝑘

𝑘=1

𝑋𝑛
𝑗|𝜇𝑘, 𝜎𝑘)                                                                                                                            (4) 219 

With 220 

∑ 𝜋𝑘 = 1𝑘
𝑘=1   221 

∀𝑘: 0 ≤ 𝜋𝑘 ≤ 1                                                                                                                                                              222 

Where 𝜇𝑘 and 𝜎𝑘 are the mean and standard deviations of each 𝑘 distribution and 𝜋𝑘 223 

expresses the weight of each distribution.  224 
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An expectation maximization algorithm is applied in deriving the parameters that maximize 225 

the likelihood of the GMM given the training data, here, the residuals obtained during 226 

identification. These parameters are then applied in computing the probability of each 227 

observation. The best number of distributions to fit the data is also determined by minimizing 228 

the Akaike information criterion (AIC) (Xiao et al., 2016). 229 

Once the GMM is fitted on the training data, a normal or anomalous process state can be 230 

identified by computing the probability of observing the residuals computed for that state 231 

using the GMM fitted on the residuals obtained during identification. The probabilities of 232 

observing the residuals during the anomalous state will be much lower compared to the 233 

probability of observing the residuals obtained during the normal process state and also 234 

during identification. This methodology has been shown to achieve state of the art 235 

performance when detecting faults in rotary machinery and high-voltage electronic 236 

equipment (Yan et al., 2017). 237 

 238 

3 Materials and Methods 239 

3.1 Greenhouse and experimental setup 240 

Two six week studies were conducted in a climate controlled greenhouse. The heating and 241 

ventilation set points were approximately 17 and 23°C respectively. Lettuce plants were 242 

planted in individual 2.5 L containers containing a sandy loam soil (FC= 0.186 𝑚3𝑚−3 , 243 

PWP= 0.071 𝑚3𝑚−3). To prevent evaporation, the soil surface of the pots were covered with 244 

a 5 cm layer of plastic beads.   245 

During the initial study, the plants were irrigated every two hours. However, four hours prior 246 

to the initiation of measurements, four lettuce plants were selected and irrigated to replace 247 

100% of the water lost by transpiration, four plants were irrigated to replace 90% of the water 248 

lost by transpiration, and four other plants were irrigated to replace 75% of water lost by 249 

transpiration. These irrigation treatments are hereafter referred to as 100ET, 90ET and 75ET 250 



11 
 

respectively. Irrigation volumes corresponding to the treatments was applied every two 251 

hours. This approach was used in other to ensure the uniform development of the plant 252 

population’s leaf area index. 253 

During a follow-up study, after four hours into a diurnal measurement period, irrigation was 254 

withheld from four lettuce plants which have been receiving the 100ET irrigation treatment. 255 

Four other lettuce plants also received the 100ET irrigation treatment all through the diurnal 256 

measurement period. Irrigation was applied every two hours to these set of plants.  257 

3.2 Microclimate measurements 258 

Environmental variables measured at plant canopy level included ambient air temperature 259 

and relative humidity using a temperature and humidity probe (Model EE08, E+E Elektronik, 260 

Engerwitzdorf, Austria), and incoming radiation using a pyranometer sensor (Model SP-110,  261 

Apogee Instruments, Logan, Utah, USA). Wind speed was measured using a hot wire 262 

anemometer (Model AM – 4202, Lutron Electronics, London, UK) installed 10cm above the 263 

crop canopy. The VPD was calculated using temperature and relative humidity data 264 

following the equations outlined in Allen et al. (1998). Sensor readings were obtained at a  5 265 

s interval and averaged online over 1 min periods with a CR1000 data acquisition system 266 

(Campbell Scientific, Logan, Utah, USA). All sensors were factory calibrated by their 267 

respective manufacturers.  268 

3.3 Transpiration measurements 269 

Crop transpiration of the lettuce plants was measured using three load balance systems 270 

(Model ALC, Acculab, Englewood, USA) with a 16 𝑘𝑔  capacity and ±0.1 𝑔 resolution.  Each 271 

load balance recorded the mass of the four plants in each treatment group. 272 

The total transpiration for a time period was calculated as the mass difference, ∆𝑀 between 273 

two consecutive time instants as recorded by the mass balance system. This was then 274 

converted to the units of volume by multiplying ∆𝑀 by the density of water (1000 𝑘𝑔𝑚−3). In 275 

the various irrigation treatments, a computer controlled irrigation system applied irrigation to 276 
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replace the predefined percentage of water loss based on the calculated water loss volume. 277 

The total irrigation volume calculated for a treatment group was divided equally among the 278 

plants assigned to that group. 279 

The transpiration rate was calculated as  280 

𝑇𝑝 =
𝑀(𝑡𝑖+1) − 𝑀(𝑡𝑖)

𝐴. (𝑡𝑖+1 − 𝑡𝑖)

𝑗

𝑛
                                                                                                                                     (5) 281 

Where 𝑀(𝑡𝑖) is the mass (𝑔) given by the balance at time 𝑡𝑖 (𝑚𝑖𝑛), 𝐴 (𝑚2) is the area of the 282 

shelve on which the plants are placed, 𝑛 is the number of pots on the balance tray and 𝑗 is 283 

the number of plants on the shelve. During irrigation, the transpiration rate was assumed to 284 

be constant. Data from the balance system was directly stored every minute. 285 

3.4 Leaf area index measurements 286 

The leaf area index (LAI) values for the plants placed on the balance were assessed using 287 

digital images captured with a mobile phone camera. The LAI values were then extracted 288 

from the digital images using the Easy leaf area software (Department of Plant Sciences, 289 

University of California).  290 

3.5 Ancillary measurements 291 

The soil moisture status of the plants placed on the balance was measured at hourly 292 

intervals using a model GS1 soil moisture sensor (Decagon Devices, Pullman, Washington, 293 

USA). The stomatal conductance of the plants was also measured using a diffusion leaf 294 

porometer (Model AP4, Delta-T Devices, Cambridge, UK) between 13:00 and 15:00 hrs local 295 

standard time.  296 

 297 

 298 

 299 
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4 Results and discussion 300 

The nighttime transpiration of the plants was negligible all through the study period, with a 301 

maximum cumulative transpiration of 3 𝑔 being recorded. As such, the daytime transpiration 302 

recorded between  8:00 am and 4:00 pm was further explored.  303 

4.1 Dynamics of crop transpiration 304 

The measured typical daily dynamics of the crop transpiration along with prevailing 305 

environmental conditions for a sunny and cloudy day are presented in Figure 2 and Figure 3 306 

respectively. It is seen that the 100ET and 90ET plants maintain a higher transpiration rate 307 

when compared to the 75ET plants.  The transpiration dynamics also seem to follow the 308 

dynamics of the incoming radiation. However, there isn’t a significant difference in the 309 

transpiration rates of the 100ET and 90ET plants (𝑝 > 0.1). Stomatal conductance 310 

measurements conducted on the plants also didn’t indicate a significant difference in their 311 

water status (𝑝 > 0.1). The reverse was the case for comparisons of stomatal conductance 312 

measurements of both the 100ET and 90ET plants with the 75ET plants. In Figure 2 and 313 

Figure 3 , the datapoints indicating a higher transpiration rate for the 75ET plants are 314 

attributed to measurement errors. This anomaly is addressed in section 4.2.  315 

Overall, the difference in transpiration rate between both the 100ET and 90ET plants, and 316 

the 75ET plants indicated a significant difference in their plant water status. This is in 317 

agreement with the results presented by Agam et al. (2013). They reported a significant 318 

difference in the transpiration rates of well-watered and water-stressed olive trees. During 319 

the course of the study, a maximum transpiration rate of 1.8 𝑔𝑚−2𝑚𝑖𝑛−1 was recorded for 320 

the 75ET plants while a value of 3.2 𝑔𝑚−2𝑚𝑖𝑛−1 was recorded for the 90ET and 100ET 321 

plants. 322 

Due to the non-significant difference in the transpiration and water status of the 100ET and 323 

90ET plants, the 100ET and 75ET plants were considered in the subsequent analysis. 324 
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 325 

Figure 2: Measured incoming radiation and transpiration dynamics of the lettuce crops 326 

during a sunny day (a) incoming radiation (b) transpiration 327 
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 328 

Figure 3: Measured incoming radiation and transpiration dynamics of the lettuce plants 329 

during a cloudy day (a) incoming radiation (b) transpiration 330 

4.2 Decoupling and filtering of the transpiration signals 331 

The measured transpiration signals contained different components, some of which were of 332 

low amplitude and others characterized by higher amplitudes. The higher amplitude 333 

components were determined to be a result of measurement noise and short-term variability 334 

in the environment. Such components were decoupled and analysed by calculating the 335 

power spectrum of the measured signals using fast Fourier transformation algorithm (FFT) 336 

(Welch, 1967). Figure 4 shows an example of the power spectrum results obtained from the 337 
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measured transpiration signals. The results showed that the signals are a combination of 338 

different components that have statistical characteristics but which cannot be observed 339 

directly (Taylor et al., 2007).  340 

 341 

Figure 4: Power spectrum of the measured transpiration signals 342 

The overall transpiration signal 𝑇𝑝(𝑡) as a function of the different components can be 343 

represented by the following discrete time equation 344 

𝑇𝑝(𝑡) =  𝑇𝑘 +  𝐶𝑘 +  𝑓(𝑢𝑘) +  𝑒𝑘                                                                                                                          (5) 345 

Where 𝑇𝑘 is the trend or low frequency component, 𝐶𝑘 is the cyclical or higher frequency 346 

component, 𝑓(𝑢𝑘) captures the influence of the input variables and 𝑒𝑘 is the noise 347 

component.  348 
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To reduce model complexity, only the 𝑇𝑘 and 𝑓(𝑢𝑘) components of the transpiration signal 349 

were considered. The components are decoupled from the measured transpiration signals 350 

and represented as  351 

𝑦(𝑘) =  𝑇𝑘 +   𝑓(𝑢𝑘)                                                                                                                                               (6) 352 

Where 𝑦(𝑘) is the decoupled transpiration signal. As an example, the decoupled 353 

transpiration signals of the 100ET and 75ET plants shown in Figure 3 are presented in 354 

Figure 5. It can be seen that their transpiration dynamics is clearly separated and the 355 

measurement noise is sufficiently filtered. 356 

 357 

Figure 5: Decoupled transpiration signals 358 

4.3 System Identification and dynamic modelling of the plant transpiration 359 

The dynamic model of the plant transpiration was identified online by applying system 360 

identification on the incoming time-series data of the measured transpiration rate and 361 

environmental variables. 362 
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A second-order discrete-time transfer function model was sufficient to describe the 363 

transpiration dynamics with an average coefficient of determination 𝑅𝑇
2 = 0.93 ± 0.04 and 364 

average Young identification criterion 𝑌𝐼𝐶 =  −8.00 ± 3.00 (Young and Jakeman, 1980). 365 

An example of the measured and modelled transpiration rate for the 100ET and 75ET plants 366 

is presented in Figure 6. It is seen that the modelled values closely match that measured 367 

values while capturing the dominant dynamics.  368 

 369 

Figure 6: Measured and modelled transpiration dynamics of the lettuce plants (a) 100ET (b) 370 

75ET 371 
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The time delay associated with the input parameters was however found to vary as a 372 

function of plant growth. As such, the LAI was used to divide the model into different 373 

intervals as summarized in Table 1. For the division, it is easy to change the LAI into other 374 

time units such as days after planting. 375 

Table 1 – Results of the model identification as a function of the LAI interval. 𝑛 is the 376 

equation’s order, 𝑚𝑆𝑅 is the number of parameters associated with the radiation input, 𝑚𝑉𝑃𝐷 377 

is the number of parameters associated with the VPD input. 𝛿𝑆𝑅 and 𝛿𝑉𝑃𝐷 are the time delay 378 

associated with the radiation and VPD inputs respectively.  379 

LAI interval 𝑛 𝑚𝑆𝑅 𝑚𝑉𝑃𝐷 𝛿𝑆𝑅 𝛿𝑉𝑃𝐷 

0.8 or lower 2 2 2 0 0 

0.8 to 1.6 2 2 2 2 0 

1.6 or higher 2 2 2 4 0 

Sánchez et al. (2012) reported that a dynamic model of the transpiration is able to overcome 380 

the limitations encountered by steady-state models of crop transpiration. These include the 381 

overestimation of transpiration rates at low values of LAI and underestimation at higher 382 

values. The steady-state models are also unable to sufficiently capture the dominant 383 

dynamics which results in an advancement of the real dynamics over the modelled values.  384 

4.4 Online update of model parameters and prediction of the plant transpiration rate 385 

The biosystem, such as the lettuce plant, is a complex assemblage of interacting physical, 386 

chemical and biological processes. As such, its transpiration dynamics will vary from day to 387 

day due to changes in the stomatal response, biological adaptation, and the prevailing 388 

environment.  Accordingly, during the follow-up study, the parameters of the identified 389 

models were updated at the start of each diurnal measurement period.  390 
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It was found that the incoming time-series measurements of input/output data obtained 391 

during the first 120 mins of active transpiration were sufficient to model the transpiration 392 

dynamics of the plants in a defined water status state. The parameterized model was then 393 

applied in predicting the transpiration dynamics for the subsequent time period and updated 394 

after 240 mins. Explained further, at the start of active transpiration at time 𝑡 − 120, the data 395 

points recorded during the time period 𝑡 − 120 to 𝑡  were used for parameter identification 396 

and prediction was made during time 𝑡 to 𝑡 + 240. At time 𝑡 + 240, the model parameters 397 

were then updated recursively using data points recorded during  𝑡 to 𝑡 + 240 which were 398 

flagged as conforming to the defined water status state. Predictions are then made for the 399 

subsequent time period.  400 

 The average prediction performance of the model is summarized in Table 2. Table 2 shows 401 

that the models are able to achieve a satisfactory level of performance at all crop growth 402 

stages 403 

Table 2 – Average prediction performance of the identified models. Standard deviations are 404 

included in the brackets 405 

LAI interval Mean absolute 

error(𝑔𝑚−2𝑚𝑖𝑛−1) 

Root mean square error 

(𝑔𝑚−2𝑚𝑖𝑛−1) 

0.8 or lower 0.05 (± 0.0035) 0.06 (± 0.0044) 

0.8 to 1.6 0.13 (± 0.0106) 0.15 (± 0.0128) 

1.6 or higher 0.09 (± 0.0046) 0.11 (± 0.0059) 

 406 

Pollet et al. (2000) reported results for a PM type model for estimating the transpiration of 407 

greenhouse grown lettuce plants. They reported a 6% overestimation of transpiration by the 408 
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model. It should also be noted that the parameters of PM type models are fitted for a 409 

particular water status state. The dynamic modelling approach presented in the paper can 410 

easily be applied to a plant at any water status state. This is because the parametrization of 411 

the model can be achieved using routinely measured environmental variables and 412 

transpiration measurements. The need to explicitly model the stomatal response is 413 

eliminated as this is implicitly accounted for in the online estimated model parameters and 414 

time delay. This is in agreement with the conclusions of Sánchez et al. (2012). 415 

4.5 Monitoring of plant water status 416 

The transpiration rate of lettuce plants is dependent on their water status as demonstrated in 417 

section 4.1. This suggests that the difference in the transpiration dynamics as a function of 418 

water status can be exploited as a means of monitoring the water status of the plants.  419 

As an example, in Figure 7, the model predicted transpiration dynamics of lettuce plants for 420 

which irrigation was not withheld along with the measured values during a measurement 421 

period is shown.  It should be noted that data points applied in parameter identification are 422 

not included in the prediction phase. The measured and modelled values closely match each 423 

other during this period as irrigation was not withheld from the plants; this period of normal 424 

irrigation is defined as state 1. Succinctly, parameter identification was conducted in state 1 425 

and prediction was made at a later period when the plants remained in state 1. The average 426 

stomatal conductance recorded for the plants during this period was 139.22(±1.14) 427 

𝑚𝑚𝑜𝑙𝑚−2𝑠1 and the average soil moisture content was 0.18(±0.002) 𝑚3𝑚−3, a value close 428 

to the field capacity of the growing media.  429 
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 430 

Figure 7: Measured and model predicted transpiration dynamics during a period of normal 431 

irrigation 432 

Figure 8 shows the measured and model predicted transpiration dynamics of the set of 433 

plants for which irrigation was withheld after a period of normal irrigation, defined as state 2. 434 

It is seen that there is a wide deviation between the measured and model predicted values. 435 

This is because the model was parameterized for a water status state of the plant during 436 

which irrigation was constantly applied to replace transpiration water loss (state 1). The 437 

average stomatal conductance recorded during this period was 116.94(±0.92) 𝑚𝑚𝑜𝑙𝑚−2𝑠1 438 

while the average soil moisture content was 0.16(±0.001)  𝑚3𝑚−3. The stomatal 439 

conductance values show a clear significant difference (𝑝 < 0.05) in water status of the 440 

plants in state 1 and state 2. It is interesting to note that this difference in plant water status 441 

is also indicated in the measured transpiration rate even though  the soil moisture status was 442 

above the maximum allowable depletion level of 35% (lower soil moisture target = 0.15 443 

𝑚3𝑚−3) defined for the lettuce crop.  444 
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 445 

Figure 8:  Measured and model predicted transpiration dynamics during a period after which 446 

irrigation had been withheld 447 

These results give evidence that the transpiration dynamics can indeed be applied as a tool 448 

for monitoring the water status of the lettuce crop.  This was consistently shown in the data 449 

obtained all through the follow-up study. The results also show that the proposed water 450 

status monitoring framework is able to exploit the deviation in transpiration dynamics to 451 

provide information on a change plant water status with a sensitivity similar to stomatal 452 

conductance measurements. 453 

Figure 9 shows the distribution of the residuals during the identification phase in state 1 454 

(normal irrigation). The residuals conform to a Gaussian distribution suggesting a well-455 

defined model for the state.  456 

Figure 10 shows the range of the predicted probabilities of observing the data points of the 457 

residuals in the identification phase in state 1, during prediction in state 1 and during 458 

prediction in state 2.  459 
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 460 

Figure 9: The distribution of the residuals obtained during the system identification phase 461 

These predictions were made using the Gaussian mixture model fitted on the residuals 462 

obtained during system identification.  Figure 10 shows that there is a high probability of 463 

observing the data points during the identification phase and also during prediction in the 464 

state for which the model was identified. The lowest probability of observing the data point of 465 

the residuals during the prediction in state 1 was 0.8. The reverse was the case during 466 

predictions in state 2. Low probabilities were predicted for observing the data points of the 467 

residuals in this state, with the highest probability predicted being 0.53. In Figure 10, the 468 

notches of the identification and state 1 boxes overlap which indicates that the median of 469 

their predicted probabilities is not significantly different at 5% significance level. It can also 470 

be seen that notches of the state 2 box do not overlap with the two other boxes indicating a 471 

significant difference in its median value when compared with the other predicted 472 

probabilities. The information contained in the predicted probabilities of observing the data 473 

points of the residuals provides an adequate indication of the water status state of the plants 474 
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i.e. high probabilities will be predicted when the plant is in the state for which the model was 475 

identified and low probabilities will be predicted when there is a significant change in the 476 

water status state.   477 

 478 

 479 

Figure 10: Boxplot of the probabilities predicted by the Gaussian Mixture Model fitted on the 480 

residuals obtained during the system identification phase for the identification residuals, 481 

state 1 residuals and state 2 residuals 482 

Previous studies e.g. Earl (2003), Prehn et al. (2010), Beeson (2011) have also attempted to 483 

use the measured transpiration rate as a tool for monitoring the onset of drought/water 484 

stress. They attempt to achieve this by comparing the measured transpiration rate at a 485 

particular instance to the initial transpiration rate of the same plant when in a well-watered 486 

state. They, however, neglect the influence of the prevailing environment on the transpiration 487 

dynamics. The model presented in this paper addresses this drawback by predicting the 488 
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‘healthy state’ transpiration rate as a function of the known water status and real-time 489 

measurements of the environmental variables.  490 

The water status monitoring tool proposed in this paper can be applied in regulating the 491 

water deficit of greenhouse crops. This can be achieved by applying system identification to 492 

identify a model for the plant transpiration at a known water status state and then comparing 493 

the real-time measurements to the model prediction. This approach is used extensively for 494 

performing fault detection in the process industry (Das et al., 2012; Sharma et al., 2010).  495 

The intensity of water deficit can be easily quantified by computing the transpiration ratio 496 

proposed by Fernández et al. (2008). This is defined as the ratio between the actual 497 

transpiration measured on a plant and the transpiration rate expected for a well-watered 498 

plant. A value of 1 will indicate the absence of a deficit and a value of zero will indicate a 499 

severe deficit. This can be adapted to compute a deficit intensity for any desired reference 500 

water status state.  501 

It should be noted that the system identification modelling technique constitutes a data-502 

driven approach in which the dynamic response of the plant transpiration is parametrized for 503 

the specific ranges of environmental and crop conditions encountered during model 504 

development, and therefore the models are only applicable to the specific crop and 505 

environment for which they are developed. 506 

 507 

5 Conclusions 508 

A model for predicting the transpiration dynamics of greenhouse cultivated lettuce plants is 509 

presented in this paper. The data-driven model has the incoming radiation, vapour pressure 510 

deficit as input variables, and its structure varies as a function of plant growth in form of the 511 

LAI evolution. 512 
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Experimental results indicated that the transpiration dynamics of lettuce plants varied as a 513 

function of their water status. This phenomenon was therefore exploited as a tool for 514 

monitoring the water status of the plants. A model of the plant transpiration is identified 515 

online at a period during which the plant is in a desirable and known water status state. This 516 

model is then applied in predicting the crop transpiration. When there is a significant change 517 

in the water status state, the identified model is unable to explain the measured 518 

transpiration, resulting in a change in the statistical properties of the calculated residuals.   519 

This approach has an advantage over similar approaches which use the plant transpiration 520 

as an indicator of its water status because it takes the time-varying nature of the plant 521 

system into account through the online adaptation of the model parameters. The difficult to 522 

model variation in stomatal response is also implicitly accounted during the online parameter 523 

estimation. This makes it a suitable plant water status monitoring tool in commercial 524 

greenhouses where the application of mechanistic models have received limited attention, 525 

due to their complexity and large input requirements. The implementation of this model in a 526 

commercial greenhouse and model development for other high-value crops will be the focus 527 

of future research.  528 
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