500 research outputs found

    Simulation of 3D Porous Media Flows with Application to Polymer Electrolyte Fuel Cells

    Get PDF
    A 3D lattice Boltzmann (LB) model with twenty-seven discrete velocities is presented and used for the simulation of three-dimensional porous media flows. Its accuracy in combination with the half-way bounce back boundary condition is assessed. Characteristic properties of the gas diffusion layers that are used in polymer electrolyte fuel cells can be determined with this model. Simulation in samples that have been obtained via X-ray tomographic microscopy, allows to estimate the values of permeability and relative effective diffusivity. Furthermore, the computational LB results are compared with the results of other numerical tools, as well as with experimental value

    Electroencephalography (EEG) for neurological prognostication after cardiac arrest and targeted temperature management; rationale and study design.

    Get PDF
    BACKGROUND: Electroencephalography (EEG) is widely used to assess neurological prognosis in patients who are comatose after cardiac arrest, but its value is limited by varying definitions of pathological patterns and by inter-rater variability. The American Clinical Neurophysiology Society (ACNS) has recently proposed a standardized EEG-terminology for critical care to address these limitations. METHODS/DESIGN: In the TTM-trial, 399 post cardiac arrest patients who remained comatose after rewarming underwent a routine EEG. The presence of clinical seizures, use of sedatives and antiepileptic drugs during the EEG-registration were prospectively documented. DISCUSSION: A well-defined terminology for interpreting post cardiac arrest EEGs is critical for the use of EEG as a prognostic tool. TRIAL REGISTRATION: The TTM-trial is registered at ClinicalTrials.gov (NCT01020916)

    Using soil function evaluation in multi-criteria decision analysis for sustainability appraisal of remediation alternatives

    Get PDF
    Soil contamination is one of the major threats constraining proper functioning of the soil and thus provision of ecosystem services. Remedial actions typically only address the chemical soil quality by reducing total contaminant concentrations to acceptable levels guided by land use. However, emerging regulatory requirements on soil protection demand a holistic view on soil assessment in remediation projects thus accounting for a variety of soil functions. Such a view would require not only that the contamination concentrations are assessed and attended to, but also that other aspects are taking into account, thus addressing also physical and biological as well as other chemical soil quality indicators (SQIs). This study outlines how soil function assessment can be a part of a holistic sustainability appraisal of remediation alternatives using multi-criteria decision analysis (MCDA). The paper presents a method for practitioners for evaluating the effects of remediation alternatives on selected ecological soil functions using a suggested minimum data set (MDS) containing physical, biological and chemical SQIs. The measured SQls are transformed into sub-scores by the use of scoring curves, which allows interpretation and the integration of soil quality data into the MCDA framework. The method is demonstrated at a study site (Marieberg, Sweden) and the results give an example of how soil analyses using the suggested MDS can be used for soil function assessment and subsequent input to the MCDA framework

    Evaluation of a Commercial Enzyme Linked Immunosorbent Assay (ELISA) for the Determination of the Neurotoxin BMAA in Surface Waters

    Get PDF
    The neurotoxin ß-N-methylamino-L-alanine (BMAA) is suspected to play a role in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Because BMAA seems to be produced by cyanobacteria, surface waters are screened for BMAA. However, reliable analysis of BMAA requires specialized and expensive equipment. In 2012, a commercial enzyme-linked immunosorbent assay (ELISA) for determination of BMAA in surface waters was released. This kit could enable fast and relatively cheap screening of surface waters for BMAA. The objective of this study was to determine whether the BMAA ELISA kit was suitable for the determination of BMAA concentrations in surface waters. We hypothesised that the recovery of spiked samples was close to 100% and that the results of unspiked sample analysis were comparable between ELISA and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. However, we found that recovery was higher than 100% in most spiked samples, highest determined recovery was over 400%. Furthermore, the ELISA gave a positive signal for nearly each tested sample while no BMAA could be detected by LC-MS/MS. We therefore conclude that in its current state, the kit is not suitable for screening surface waters for BMAA

    Stability trends of M

    Full text link

    Proving Type Class Laws for Haskell

    Full text link
    Type classes in Haskell are used to implement ad-hoc polymorphism, i.e. a way to ensure both to the programmer and the compiler that a set of functions are defined for a specific data type. All instances of such type classes are expected to behave in a certain way and satisfy laws associated with the respective class. These are however typically just stated in comments and as such, there is no real way to enforce that they hold. In this paper we describe a system which allows the user to write down type class laws which are then automatically instantiated and sent to an inductive theorem prover when declaring a new instance of a type class.Comment: Presented at the Symposium for Trends in Functional Programming, 201
    corecore