12 research outputs found

    FLIM reveals alternative EV-mediated cellular up-take pathways of paclitaxel

    Get PDF
    In response to physiological and artificial stimuli, cells generate nano-scale extracellular vesicles (EVs) by encapsulating biomolecules in plasma membrane-derived phospholipid envelopes. These vesicles are released to bodily fluids, hence acting as powerful endogenous mediators in intercellular signaling. EVs provide a compelling alternative for biomarker discovery and targeted drug delivery, but their kinetics and dynamics while interacting with living cells are poorly understood. Here we introduce a novel method, fluorescence lifetime imaging microscopy (FLIM) to investigate these interaction attributes. By FLIM, we show distinct cellular uptake mechanisms of different EV subtypes, exosomes and microvesicles, loaded with anti-cancer agent, paclitaxel. We demonstrate differences in intracellular behavior and drug release profiles of paclitaxel-containing EVs. Exosomes seem to deliver the drug mostly by endocytosis while microvesicles enter the cells by both endocytosis and fusion with cell membrane. This research offers a new real-time method to investigate EV kinetics with living cells, and it is a potential advancement to complement the existing techniques. The findings of this study improve the current knowledge in exploiting EVs as next-generation targeted drug delivery systems.Peer reviewe

    A nanovaccine formulation of Chlamydia recombinant MOMP encapsulated in PLGA 85:15 nanoparticles augments CD4+ effector (CD44high CD62Llow) and memory (CD44high CD62Lhigh) T-cells in immunized mice

    No full text
    Vaccine developmental strategies are utilizing antigens encapsulated in biodegradable polymeric nanoparticles. Here, we developed a Chlamydia nanovaccine (PLGA-rMOMP) by encapsulating its recombinant major outer membrane protein (rMOMP) in the extended-releasing and self-adjuvanting PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. PLGA-rMOMP was small (nanometer size), round and smooth, thermally stable, and exhibited a sustained release of rMOMP. Stimulation of mouse primary dendritic cells (DCs) with PLGA-rMOMP augmented endosome processing, induced Th1 cytokines (IL-6 and IL-12p40), and expression of MHC-II and co-stimulatory (CD40, CD80, and CD86) molecules. BALB/c mice immunized with PLGA-rMOMP produced enhanced CD4+ T-cells-derived memory (CD44high CD62Lhigh), and effector (CD44high CD62Llow) phenotypes and functional antigen-specific serum IgG antibodies. In vivo biodistribution of PLGA-rMOMP revealed its localization within lymph nodes, suggesting migration from the injection site via DCs. Our data provide evidence that the PLGA (85:15) nanovaccine activates DCs and augments Chlamydia-specific rMOMP adaptive immune responses that are worthy of efficacy testing.Fil: Sahu, Rojalin. University of Alabama at Birmingahm; Estados UnidosFil: Dixit, Saurabh. University of Alabama at Birmingahm; Estados UnidosFil: Verma, Richa. University of Alabama at Birmingahm; Estados UnidosFil: Duncan, Christopher C.. University of Alabama at Birmingahm; Estados UnidosFil: Coats, Mamie T.. University of Alabama at Birmingahm; Estados UnidosFil: Giambartolomei, Guillermo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Singh, Shree R.. University of Alabama at Birmingahm; Estados UnidosFil: Dennis, Vida A.. University of Alabama at Birmingahm; Estados Unido

    Rapid Poultry Spoilage Evaluation Using Portable Fiber-Optic Raman Spectrometer

    No full text
    The freshness changes in poultry fillets during storage were studied using a portable fiber-optic Raman spectrometer. Poultry fillets with the same storage life (9 days) and expiry date were purchased from a local store and stored at 4 °C. Their Raman spectra were measured on a daily basis up to day 21 using a QE Pro-Raman spectrometer with a laser excitation wavelength of 785 nm. The complex spectra were analyzed using Principal Components Analysis (PCA), which resulted in a separation of the samples into three quality classes according to their freshness: fresh, semi-fresh, and spoiled. These classes were based on and similar to the information inferred from the product label on the packages of poultry fillets. The PCA loadings revealed a decrease in the protein content of the poultry meat during spoilage, an increase in the formation of free amino acids, an increase in oxidation of amino acid residues, and an increase in microbial growth on the surface of the poultry fillets, as well as revealing information about hydrophobic interaction around the aliphatic residues. Similar groupings (fresh, semi-fresh, and spoiled) were also obtained from the results of an Agglomerative Hierarchical Cluster Analysis (AHCA) of the first five principal components. The results allow the conclusion that the portable fiber-optic Raman spectrometer can be used as a reliable and fast method for real-time freshness evaluation of poultry during storage

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    No full text
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Report of the Topical Group on Physics Beyond the Standard Model at Energy Frontier for Snowmass 2021

    No full text
    This is the Snowmass2021 Energy Frontier (EF) Beyond the Standard Model (BSM) report. It combines the EF topical group reports of EF08 (Model-specific explorations), EF09 (More general explorations), and EF10 (Dark Matter at Colliders). The report includes a general introduction to BSM motivations and the comparative prospects for proposed future experiments for a broad range of potential BSM models and signatures, including compositeness, SUSY, leptoquarks, more general new bosons and fermions, long-lived particles, dark matter, charged-lepton flavor violation, and anomaly detection

    Report of the Topical Group on Physics Beyond the Standard Model at Energy Frontier for Snowmass 2021

    No full text
    International audienceThis is the Snowmass2021 Energy Frontier (EF) Beyond the Standard Model (BSM) report. It combines the EF topical group reports of EF08 (Model-specific explorations), EF09 (More general explorations), and EF10 (Dark Matter at Colliders). The report includes a general introduction to BSM motivations and the comparative prospects for proposed future experiments for a broad range of potential BSM models and signatures, including compositeness, SUSY, leptoquarks, more general new bosons and fermions, long-lived particles, dark matter, charged-lepton flavor violation, and anomaly detection
    corecore