1,366 research outputs found

    Binary Black Hole Mergers from Planet-like Migrations

    Get PDF
    If supermassive black holes (BHs) are generically present in galaxy centers, and if galaxies are built up through hierarchical merging, BH binaries are at least temporary features of most galactic bulges. Observations suggest, however, that binary BHs are rare, pointing towards a binary lifetime far shorter than the Hubble time. We show that, regardless of the detailed mechanism, all stellar-dynamical processes are insufficient to reduce significantly the orbital separation once orbital velocities in the binary exceed the virial velocity of the system. We propose that a massive gas disk surrounding a BH binary can effect its merger rapidly, in a scenario analogous to the orbital decay of super-jovian planets due to a proto-planetary disk. As in the case of planets, gas accretion onto the secondary (here a supermassive BH) is integrally connected with its inward migration. Such accretion would give rise to quasar activity. BH binary mergers could therefore be responsible for many or most quasars.Comment: 8 pages, submitted to ApJ Letter

    Large stellar disks in small elliptical galaxies

    Get PDF
    We present the rotation velocities V and velocity dispersions sigma along the principal axes of seven elliptical galaxies less luminous than M_B= -19.5. These kinematics extend beyond the half-light radii for all systems in this photometrically selected sample. At large radii the kinematics not only confirm that rotation and "diskiness" are important in faint ellipticals, as was previously known, but also demonstrate that in most sample galaxies the stars at large galactocentric distances have (V/sigma)_max of about 2, similar to the disks in bona-fide S0 galaxies. Comparing this high degree of ordered stellar motion in all sample galaxies with numerical simulations of dissipationless mergers argues against mergers with mass ratios <=3:1 as an important mechanism in the final shaping of low-luminosity ellipticals, and favors instead the dissipative formation of a disk.Comment: 11 pages LaTex with 4 Postscript figure

    Precise Ages of Field Stars from White Dwarf Companions

    Get PDF
    Observational tests of stellar and Galactic chemical evolution call for the joint knowledge of a star's physical parameters, detailed element abundances, and precise age. For cool main-sequence (MS) stars the abundances of many elements can be measured from spectroscopy, but ages are very hard to determine. The situation is different if the MS star has a white dwarf (WD) companion and a known distance, as the age of such a binary system can then be determined precisely from the photometric properties of the cooling WD. As a pilot study for obtaining precise age determinations of field MS stars, we identify nearly one hundred candidates for such wide binary systems: a faint WD whose GPS1 proper motion matches that of a brighter MS star in Gaia/TGAS with a good parallax (σϖ/ϖ≀0.05\sigma_\varpi/\varpi\le 0.05). We model the WD's multi-band photometry with the BASE-9 code using this precise distance (assumed to be common for the pair) and infer ages for each binary system. The resulting age estimates are precise to ≀10%\le 10\% (≀20%\le 20\%) for 4242 (6767) MS-WD systems. Our analysis more than doubles the number of MS-WD systems with precise distances known to date, and it boosts the number of such systems with precise age determination by an order of magnitude. With the advent of the Gaia DR2 data, this approach will be applicable to a far larger sample, providing ages for many MS stars (that can yield detailed abundances for over 20 elements), especially in the age range 2 to 8\,\Gyr, where there are only few known star clusters.Comment: 9 pages, 5 figures, 1 catalog; Submitted to Ap

    A comprehensive Maximum Likelihood analysis of the structural properties of faint Milky Way satellites

    Full text link
    We derive the structural parameters of the recently discovered very low luminosity Milky Way satellites through a Maximum Likelihood algorithm applied to SDSS data. For each satellite, even when only a few tens of stars are available down to the SDSS flux limit, the algorithm yields robust estimates and errors for the centroid, position angle, ellipticity, exponential half-light radius and number of member stars. This latter parameter is then used in conjunction with stellar population models of the satellites to derive their absolute magnitudes and stellar masses, accounting for `CMD shot-noise'. We find that faint systems are somewhat more elliptical than initially found and ascribe that to the previous use of smoothed maps which can be dominated by the smoothing kernel. As a result, the faintest half of the Milky Way dwarf galaxies (M_V>-7.5) is significantly (4-sigma) flatter (e=0.47+/-0.03) than its brightest half (M_V<-7.5, e=0.32+/-0.02). From our best models, we also investigate whether the seemingly distorted shape of the satellites, often taken to be a sign of tidal distortion, can be quantified. We find that, except for tentative evidence of distortion in CVnI and UMaII, these can be completely accounted for by Poisson scatter in the sparsely sampled systems. We consider three scenarios that could explain the rather elongated shape of faint satellites: rotation supported systems, stars following the shape of more triaxial dark matter subhalos, or elongation due to tidal interaction with the Milky Way. Although none of these is entirely satisfactory, the last one appears the least problematic, but warrants much deeper observations to track evidence of such tidal interaction.Comment: 20 pages, 11 figures, ApJ in press; some typos corrected, magnitude of BooII corrected (thanks go to Shane Walsh for spotting the erroneous original value

    Mapping low-latitude stellar substructure with SEGUE photometry

    Full text link
    Encircling the Milky Way at low latitudes, the Low Latitude Stream is a large stellar structure, the origin of which is as yet unknown. As part of the SEGUE survey, several photometric scans have been obtained that cross the Galactic plane, spread over a longitude range of 50 to 203 degrees. These data allow a systematic study of the structure of the Galaxy at low latitudes, where the Low Latitude Stream resides. We apply colour-magnitude diagram fitting techniques to map the stellar (sub)structure in these regions, enabling the detection of overdensities with respect to smooth models. These detections can be used to distinguish between different models of the Low Latitude Stream, and help to shed light on the nature of the system.Comment: To appear in the proceedings of IAU Symposium 254 "The Galaxy disk in a cosmological context", Copenhagen, June 200

    Discovery of a Fifth Image of the Large Separation Gravitationally Lensed Quasar SDSS J1004+4112

    Full text link
    We report the discovery of a fifth image in the large separation lensed quasar system SDSS J1004+4112. A faint point source located 0.2'' from the center of the brightest galaxy in the lensing cluster is detected in images taken with the Advanced Camera for Surveys (ACS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope. The flux ratio between the point source and the brightest lensed component in the ACS image is similar to that in the NICMOS image. The location and brightness of the point source are consistent with lens model predictions for a lensed image. We therefore conclude that the point source is likely to be a fifth image of the source quasar. In addition, the NICMOS image reveals the lensed host galaxy of the source quasar, which can strongly constrain the structure of the lensing critical curves and thereby the mass distribution of the lensing cluster.Comment: 5 pages, 5 figures, accepted for publication in PAS

    Translating Cultural Safety to the UK

    Get PDF
    Disproportional morbidity and mortality experienced by ethnic minorities in the UK have been highlighted by the COVID-19 pandemic. The ‘Black Lives Matter’ movement has exposed structural racism’s contribution to these health inequities. ‘Cultural Safety’, an antiracist, decolonising and educational innovation originating in New Zealand, has been adopted in Australia. Cultural Safety aims to dismantle barriers faced by colonised Indigenous peoples in mainstream healthcare by addressing systemic racism. This paper explores what it means to be ‘culturally safe’. The ways in which New Zealand and Australia are incorporating Cultural Safety into educating healthcare professionals and in day-to-day practice in medicine are highlighted. We consider the ‘nuts and bolts’ of translating Cultural Safety into the UK to reduce racism within healthcare. Listening to the voices of black, Asian and minority ethnic National Health Service (NHS) consumers, education in reflexivity, both personal and organisational within the NHS are key. By listening to Indigenous colonised peoples, the ex-Empire may find solutions to health inequity. A decolonising feedback loop is required; however, we should take care not to culturally appropriate this valuable reverse innovation

    Constraints on the Space Density of Methane Dwarfs and the Substellar Mass Function from a Deep Near-Infrared Survey

    Full text link
    We report preliminary results of a deep near-infrared search for methane-absorbing brown dwarfs; almost five years after the discovery of Gl 229b, there are only a few confirmed examples of this type of object. New J band, wide-field images, combined with pre-existing R band observations, allow efficient identification of candidates by their extreme (R-J) colours. Follow-up measurements with custom filters can then confirm objects with methane absorption. To date, we have surveyed a total of 11.4 square degrees to J~20.5 and R~25. Follow-up CH_4 filter observations of promising candidates in 1/4 of these fields have turned up no methane absorbing brown dwarfs. With 90% confidence, this implies that the space density of objects similar to Gl 229b is less than 0.012 per cubic parsec. These calculations account for the vertical structure of the Galaxy, which can be important for sensitive measurements. Combining published theoretical atmospheric models with our observations sets an upper limit of alpha <= 0.8 for the exponent of the initial mass function power law in this domain.Comment: 11 pages + 2 figures To be published in Astrophysical Journal Letter
    • 

    corecore