8 research outputs found

    A multi-component pheromone in the urine of dominant male tilapia (Oreochromis mossambicus) reduces aggression in rivals

    No full text
    Males often use scent to communicate their dominance, and to mediate aggressive and breeding behaviors. In teleost fish, however, the chemical composition of male pheromones is poorly understood. Male Mozambique tilapia, Oreochromis mossambicus, use urine that signals social status and primes females to spawn. The urinary sex pheromone directed at females consists of 5 beta-pregnane-3 alpha,17 alpha,20 beta-triol 3-glucuronate and its 20 alpha-epimer. The concentration of these is positively correlated with male social rank. This study tested whether dominant male urine reduces aggression in receiver males, and whether the pregnanetriol 3-glucuronates also reduce male-male aggression. Males were allowed to fight their mirror image when exposed to either: i) water control or a chemical stimulus; ii) dominant male urine (DMU); iii) C18-solid phase (C18-SPE) DMU eluate; iv) C18-SPE DMU eluate plus filtrate; v) the two pregnanetriol 3-glucuronates (P3Gs); or vi) P3Gs plus DMU filtrate. Control males mounted an increasingly aggressive fight against their image over time. However, DMU significantly reduced this aggressive response. The two urinary P3Gs did not replicate the effect of whole DMU. Neither did the C18-SPE DMU eluate, containing the P3Gs, alone, nor the C18-SPE DMU filtrate to which the two P3Gs were added. Only exposure to reconstituted DMU (C18-SPE eluate plus filtrate) restored the aggression-reducing effect of whole DMU. Olfactory activity was present in the eluate and the polar filtrate in electro-olfactogram studies. We conclude that P3Gs alone have no reducing effect on aggression and that the urinary signal driving off male competition is likely to be a multi-component pheromone, with components present in both the polar and non-polar urine fractions

    A conserved plan for wiring up the fan-shaped body in the grasshopper and Drosophila

    No full text
    The central complex comprises an elaborate system of modular neuropils which mediate spatial orientation and sensory-motor integration in insects such as the grasshopper and Drosophila. The neuroarchitecture of the largest of these modules, the fan-shaped body, is characterized by its stereotypic set of decussating fiber bundles. These are generated during development by axons from four homologous protocerebral lineages which enter the commissural system and subsequently decussate at stereotypic locations across the brain midline. Since the commissural organization prior to fan-shaped body formation has not been previously analyzed in either species, it was not clear how the decussating bundles relate to individual lineages, or if the projection pattern is conserved across species. In this study, we trace the axonal projections from the homologous central complex lineages into the commissural system of the embryonic and larval brains of both the grasshopper and Drosophila. Projections into the primordial commissures of both species are found to be lineage-specific and allow putatively equivalent fascicles to be identified. Comparison of the projection pattern before and after the commencement of axon decussation in both species reveals that equivalent commissural fascicles are involved in generating the columnar neuroarchitecture of the fan-shaped body. Further, the tract-specific columns in both the grasshopper and Drosophila can be shown to contain axons from identical combinations of central complex lineages, suggesting that this columnar neuroarchitecture is also conserved
    corecore