451 research outputs found
Periodic Orbits and Spectral Statistics of Pseudointegrable Billiards
We demonstrate for a generic pseudointegrable billiard that the number of
periodic orbit families with length less than increases as , where is a constant and is the average area occupied by these families. We also find that
increases with before saturating. Finally, we show
that periodic orbits provide a good estimate of spectral correlations in the
corresponding quantum spectrum and thus conclude that diffraction effects are
not as significant in such studies.Comment: 13 pages in RevTex including 5 figure
Scale Anomaly and Quantum Chaos in the Billiards with Pointlike Scatterers
We argue that the random-matrix like energy spectra found in pseudointegrable
billiards with pointlike scatterers are related to the quantum violation of
scale invariance of classical analogue system. It is shown that the behavior of
the running coupling constant explains the key characteristics of the level
statistics of pseudointegrable billiards.Comment: 10 pages, RevTex file, uuencode
Semiclassical Inequivalence of Polygonalized Billiards
Polygonalization of any smooth billiard boundary can be carried out in
several ways. We show here that the semiclassical description depends on the
polygonalization process and the results can be inequivalent. We also establish
that generalized tangent-polygons are closest to the corresponding smooth
billiard and for de Broglie wavelengths larger than the average length of the
edges, the two are semiclassically equivalent.Comment: revtex, 4 ps figure
Level spacing distribution of pseudointegrable billiard
In this paper, we examine the level spacing distribution of the
rectangular billiard with a single point-like scatterer, which is known as
pseudointegrable. It is shown that the observed is a new type, which is
quite different from the previous conclusion. Even in the strong coupling
limit, the Poisson-like behavior rather than Wigner-like is seen for ,
although the level repulsion still remains in the small region. The
difference from the previous works is analyzed in detail.Comment: 11 pages, REVTeX file, 3 PostScript Figure
Level statistics and eigenfunctions of pseudointegrable systems: dependence on energy and genus number
We study the level statistics (second half moment and rigidity
) and the eigenfunctions of pseudointegrable systems with rough
boundaries of different genus numbers . We find that the levels form energy
intervals with a characteristic behavior of the level statistics and the
eigenfunctions in each interval. At low enough energies, the boundary roughness
is not resolved and accordingly, the eigenfunctions are quite regular functions
and the level statistics shows Poisson-like behavior. At higher energies, the
level statistics of most systems moves from Poisson-like towards Wigner-like
behavior with increasing . Investigating the wavefunctions, we find many
chaotic functions that can be described as a random superposition of regular
wavefunctions. The amplitude distribution of these chaotic functions
was found to be Gaussian with the typical value of the localization volume
. For systems with periodic boundaries we find
several additional energy regimes, where is relatively close to the
Poisson-limit. In these regimes, the eigenfunctions are either regular or
localized functions, where is close to the distribution of a sine or
cosine function in the first case and strongly peaked in the second case. Also
an interesting intermediate case between chaotic and localized eigenfunctions
appears
Low rank perturbations and the spectral statistics of pseudointegrable billiards
We present an efficient method to solve Schr\"odinger's equation for
perturbations of low rank. In particular, the method allows to calculate the
level counting function with very little numerical effort. To illustrate the
power of the method, we calculate the number variance for two pseudointegrable
quantum billiards: the barrier billiard and the right triangle billiard
(smallest angle ). In this way, we obtain precise estimates for the
level compressibility in the semiclassical (high energy) limit. In both cases,
our results confirm recent theoretical predictions, based on periodic orbit
summation.Comment: 4 page
Periodic Orbits in Polygonal Billiards
We review some properties of periodic orbit families in polygonal billiards
and discuss in particular a sum rule that they obey. In addition, we provide
algorithms to determine periodic orbit families and present numerical results
that shed new light on the proliferation law and its variation with the genus
of the invariant surface. Finally, we deal with correlations in the length
spectrum and find that long orbits display Poisson fluctuations.Comment: 30 pages (Latex) including 11 figure
Invariant varieties of periodic points for some higher dimensional integrable maps
By studying various rational integrable maps on with
invariants, we show that periodic points form an invariant variety of dimension
for each period, in contrast to the case of nonintegrable maps in which
they are isolated. We prove the theorem: {\it `If there is an invariant variety
of periodic points of some period, there is no set of isolated periodic points
of other period in the map.'}Comment: 24 page
Hexagonal dielectric resonators and microcrystal lasers
We study long-lived resonances (lowest-loss modes) in hexagonally shaped
dielectric resonators in order to gain insight into the physics of a class of
microcrystal lasers. Numerical results on resonance positions and lifetimes,
near-field intensity patterns, far-field emission patterns, and effects of
rounding of corners are presented. Most features are explained by a
semiclassical approximation based on pseudointegrable ray dynamics and boundary
waves. The semiclassical model is also relevant for other microlasers of
polygonal geometry.Comment: 12 pages, 17 figures (3 with reduced quality
- …