1,135 research outputs found

    Zeeman tomography of magnetic white dwarfs. III, The 70–80 Megagauss magnetic field of PG 1015+014

    Get PDF
    Aims. We analyse the magnetic field geometry of the magnetic DA white dwarf PG 1015+014 with our Zeeman tomography method. Methods. This study is based on rotation-phase resolved optical flux and circular polarization spectra of PG 1015+014 obtained with FORS1 at the ESO VLT. Our tomographic code makes use of an extensive database of pre-computed Zeeman spectra. The general approach has been described in Papers I and II of this series. Results. The surface field strength distributions for all rotational phases of PG 1015+014 are characterised by a strong peak at 70 MG. A separate peak at 80 MG is seen for about one third of the rotation cycle. Significant contributions to the Zeeman features arise from regions with field strengths between 50 and 90 MG. We obtain equally good simultaneous fits to the observations, collected in five phase bins, for two different field parametrizations: (i) a superposition of individually tilted and off-centred zonal multipole components; and (ii) a truncated multipole expansion up to degree l = 4 including all zonal and tesseral components. The magnetic fields generated by both parametrizations exhibit a similar global structure of the absolute surface field values, but differ considerably in the topology of the field lines. An effective photospheric temperature of T eff = 10 000 ± 1000 K was found. Conclusions. Remaining discrepancies between the observations and our best-fit models suggest that additional small-scale structure of the magnetic field exists which our field models are unable to cover due to the restricted number of free parameters

    Zeeman tomography of magnetic white dwarfs. IV, The complex field structure of the polars EF Eridani, BL Hydri and CP Tucanae

    Get PDF
    Context. The magnetic fields of the accreting white dwarfs in magnetic cataclysmic variables (mCVs) determine the accretion geometries, the emission properties, and the secular evolution of these objects. Aims. We determine the structure of the surface magnetic fields of the white dwarf primaries in magnetic CVs using Zeeman tomography. Methods. Our study is based on orbital-phase resolved optical flux and circular polarization spectra of the polars EF Eri, BL Hyi, and CP Tuc obtained with FORS1 at the ESO VLT. An evolutionary algorithm is used to synthesize best fits to these spectra from an extensive database of pre-computed Zeeman spectra. The general approach has been described in previous papers of this series. Results. The results achieved with simple geometries as centered or offset dipoles are not satisfactory. Significantly improved fits are obtained for multipole expansions that are truncated at degree lmax = 3 or 5 and include all tesseral and sectoral components with 0 ≤ m ≤ l. The most frequent field strengths of 13, 18, and 10MG for EF Eri, BL Hyi, and CP Tuc, and the ranges of field strength covered are similar for the dipole and multipole models, but only the latter provide access to accreting matter at the right locations on the white dwarf. The results suggest that the field geometries of the white dwarfs in short-period mCVs are quite complex, with strong contributions from multipoles higher than the dipole in spite of a typical age of the white dwarfs in CVs in excess of 1 Gyr. Conclusions. It is feasible to derive the surface field structure of an accreting white dwarf from phase-resolved low-state circular spectropolarimetry of sufficiently high signal-to-noise ratio. The fact that independent information is available on the strength and direction of the field in the accretion spot from high-state observations helps in unraveling the global field structure

    A new clue to the transition mechanism between optical high and low states of the supersoft X-ray source RX J0513.9-6951, implied from the recurrent nova CI Aquilae 2000 outburst model

    Get PDF
    We have found a new clue to the transition mechanism between optical high/X-ray off and optical low/X-ray on states of the LMC supersoft X-ray source RX J0513.9-6951. A sharp ~1 mag drop is common to the CI Aql 2000 outburst. These drops are naturally attributed to cessation of optically thick winds on white dwarfs. A detailed light-curve analysis of CI Aql indicates that the size of a disk drastically shrinks when the wind stops. This causes ~1-2 mag drop in the optical light curve. In RX J0513.9-6951, the same mechanism reproduces sharp ~1 mag drop from optical high to low states. We predict this mechanism also works on the transition from low to high states. Interaction between the wind and the companion star attenuates the mass transfer and drives full cycles of low and high states.Comment: 9 pages including 5 figures, to appear in the Astrophysical Journa

    Supersoft X-ray sources in M31: II. ROSAT-detected supersoft sources in the ROSAT, Chandra and XMM eras

    Full text link
    We have performed Chandra observations during the past 3 years of 5 of the M31 supersoft X-ray sources (SSS) discovered with ROSAT. Surprisingly, only one of these sources has been detected, despite a predicted detection of about 20-80 counts. This has motivated a thorough check of the ROSAT M31 survey I data, including a relaxation of the hardness ratio requirement used to select SSS. This increases the number of SSS identified in survey I by 7. We then carried out a comparison with the ROSAT M31 survey II dataset which had hitherto not been explicitly investigated for SSS. We find that most of the ROSAT survey I sources are not detected, and only two new SSS are identified. The low detection rate in the ROSAT survey II and our Chandra observations implies that the variability time scale of SSS is a few months. If the majority of these sources are close-binary SSS with shell hydrogen burning, it further implies that half of these sources predominantly experience large mass transfer rates.Comment: accepted for publ. in ApJ; 2 ps-figures; high-quality figures available at http://www.mpe.mpg.de/~jcg/publis.htm

    Kinematic Orbits and the Structure of the Internal Space for Systems of Five or More Bodies

    Get PDF
    The internal space for a molecule, atom, or other n-body system can be conveniently parameterised by 3n-9 kinematic angles and three kinematic invariants. For a fixed set of kinematic invariants, the kinematic angles parameterise a subspace, called a kinematic orbit, of the n-body internal space. Building on an earlier analysis of the three- and four-body problems, we derive the form of these kinematic orbits (that is, their topology) for the general n-body problem. The case n=5 is studied in detail, along with the previously studied cases n=3,4.Comment: 38 pages, submitted to J. Phys.
    • …
    corecore