240 research outputs found
Proving the Space Transportation System: the Orbital Flight Test Program
The main propulsion system, solid rocket boosters, external tank, orbital maneuvering system, spacecraft orbital operations (thermal tests, attitude control and remote manipulator), and return to Earth are outlined for the first four STS missions
Static and Dynamic Phases for Vortex Matter with Attractive Interactions
Exotic vortex states with long range attraction and short range repulsion
have recently been proposed to arise in superconducting hybrid structures and
multi-band superconductors. Using large scale simulations we examine the static
and dynamic properties of such vortex states interacting with random and
periodic pinning. In the absence of pinning this system does not form patterns
but instead completely phase separates. When pinning is present there is a
transition from inhomogeneous to homogeneous vortex configurations similar to a
wetting phenomenon. Under an applied drive, a dynamical dewetting process can
occur from a strongly pinned homogeneous state into pattern forming states. We
show that a signature of the exotic vortex interactions under transport
measurements is a robust double peak feature in the differential conductivity
curves.Comment: 5 pages, 4 postscript figure
Dynamical Phases of Driven Vortices Interacting with Periodic Pinning
The finite temperature dynamical phases of vortices in films driven by a
uniform force and interacting with the periodic pinning potential of a square
lattice of columnar defects are investigated by Langevin dynamics simulations
of a London model. Vortices driven along the [0,1] direction and at densities
for which there are more vortices than columnar defects () are
considered. At low temperatures, two new dynamical phases, elastic flow and
plastic flow, and a sharp transition between them are identified and
characterized according to the behavior of the vortex spatial order, velocity
distribution and frequency-dependent velocity correlationComment: 4 pages with 4 figures. To be published in Phys. Rev. B Rapid
Communication
Superconducting Fluxon Pumps and Lenses
We study stochastic transport of fluxons in superconductors by alternating
current (AC) rectification. Our simulated system provides a fluxon pump,
"lens", or fluxon "rectifier" because the applied electrical AC is transformed
into a net DC motion of fluxons. Thermal fluctuations and the asymmetry of the
ratchet channel walls induce this "diode" effect, which can have important
applications in devices, like SQUID magnetometers, and for fluxon optics,
including convex and concave fluxon lenses. Certain features are unique to this
novel two-dimensional (2D) geometric pump, and different from the previously
studied 1D ratchets.Comment: Phys. Rev. Lett. 83, in press (1999); 4 pages, 5 .gif figures;
figures also available at http://www-personal.engin.umich.edu/~nori/ratche
Phase Locking, Devil's Staircases, Farey Trees, and Arnold Tongues in Driven Vortex Lattices with Periodic Pinning
Using numerical simulations, we observe phase locking, Arnold tongues, and
Devil's staircases for vortex lattices driven at varying angles with respect to
an underlying superconducting periodic pinning array. This rich structure
should be observalble in transport measurments. The transverse curves
have a Devil's staircase structure, with plateaus occurring near the driving
angles along symmetry directions of the pinning array. Each of the plateaus
corresponds to a different dyanmical phase with a distinctive vortex structure
and flow pattern.Comment: accepted to Physical Review Letter
Deformation and Depinning of Superconducting Vortices from Artificial Defects: A Ginzburg-Landau Study
Using Ginzburg-Landau theory, we have performed detailed studies of vortices
in the presence of artificial defect arrays, for a thin film geometry. We show
that when a vortex approaches the vicinity of a defect, an abrupt transition
occurs in which the vortex core develops a ``string'' extending to the defect
boundary, while simultaneously the supercurrents and associated magnetic flux
spread out and engulf the defect. Current induced depinning of vortices is
shown to be dominated by the core string distortion in typical experimental
situations. Experimental consequences of this unusual depinning behavior are
discussed.Comment: 10 pages,9 figure
Self-organization of heterogeneous topology and symmetry breaking in networks with adaptive thresholds and rewiring
We study an evolutionary algorithm that locally adapts thresholds and wiring
in Random Threshold Networks, based on measurements of a dynamical order
parameter. A control parameter determines the probability of threshold
adaptations vs. link rewiring. For any , we find spontaneous symmetry
breaking into a new class of self-organized networks, characterized by a much
higher average connectivity than networks without threshold
adaptation (). While and evolved out-degree distributions
are independent from for , in-degree distributions become broader
when , approaching a power-law. In this limit, time scale separation
between threshold adaptions and rewiring also leads to strong correlations
between thresholds and in-degree. Finally, evidence is presented that networks
converge to self-organized criticality for large .Comment: 4 pages revtex, 6 figure
Vortex states in 2D superconductor at high magnetic field in a periodic pinning potential
The effect of a periodic pinning array on the vortex state in a 2D
superconductor at low temperatures is studied within the framework of the
Ginzburg-Landau approach. It is shown that attractive interaction of vortex
cores to a commensurate pin lattice stabilizes vortex solid phases with long
range positional order against violent shear fluctuations. Exploiting a simple
analytical method, based on the Landau orbitals description, we derive a rather
detailed picture of the low temperatures vortex state phase diagram. It is
predicted that for sufficiently clean samples application of an artificial
periodic pinning array would enable one to directly detect the intrinsic shear
stiffness anisotropy characterizing the ideal vortex lattice.Comment: 8 pages, 5 figure
- …