5,726 research outputs found
LHC Cleaning Efficiency with Imperfections
The performance reach of the LHC depends on the magnitude of beam losses and the achievable cleaning efficiency of its collimation system. The ideal performance reach for the nominal Phase 1 collimation system is reviewed. However, unavoidable imperfections affect any accelerator and can further deteriorate the collimation performance. Multiple static machine and collimator imperfections were included in the LHC tracking simulations. Error models for collimator jaw flatness, collimator setup accuracy, the LHC orbit and the LHC aperture were set up, based to the maximum extent possible on measurements and results of experimental beam tests. It is shown that combined “realistic” imperfections can reduce the LHC cleaning efficiency by about a factor 11 on average
Baseline LHC machine parameters and configuration of the 2015 proton run
This paper shows the baseline LHC machine parameters for the 2015 start-up.
Many systems have been upgraded during LS1 and in 2015 the LHC will operate at
a higher energy than before and with a tighter filling scheme. Therefore, the
2015 commissioning phase risks to be less smooth than in 2012. The proposed
starting configuration puts the focus on feasibility rather than peak
performance and includes margins for operational uncertainties. Instead, once
beam experience and a better machine knowledge has been obtained, a push in
and performance can be envisaged. In this paper, the focus is on
collimation settings and reach in ---other parameters are covered in
greater depth by other papers in these proceedings.Comment: submitted for publication in a CERN yellow report (Proceedings of the
LHC Performance Workshop - Chamonix 2014
Beam Commissioning Plan For LHC Collimation
The Large Hadron Collider extends the present state-of-the-art in stored beam energy by 2-3 orders of magnitude. A sophisticated system of collimators is implemented along the 27 km ring and mainly in two dedicated cleaning insertions, to intercept and absorb unavoidable beam losses which could induce quenches in the superconducting (sc) magnets. 88 collimators for the two beams are initially installed for the so called Phase 1. An optimized strategy for the commissioning of this considerable number of collimators has been defined. This optimized strategy maximizes cleaning efficiency and tolerances available for operation, while minimizing the required beam time for collimator setup and ensuring at all times the required passive machine protection. It is shown that operational tolerances from collimation can initially be significantly relaxed
Results of the studies on energy deposition in IR6 superconducting magnets from continuous beam loss on the TCDQ system
A single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and an iron shield TCDQM, will be installed in front of the superconducting quadrupole Q4 magnets in IR6, in order to protect it and other downstream LHC machine elements from destruction in the event of a beam dump that is not synchronised with the abort gap. The TCDQ will be positioned close to the beam, and will intercept the particles from the secondary halo during low beam lifetime. Previous studies (1-4) have shown that the energy deposited in the Q4 magnet coils can be close to or above the quench limit. In this note the results of the latest FLUKA energy deposition simulations for Beam 2 are described, including an upgrade possibility for the TCDQ system with an additional shielding device. The results are discussed in the context of the expected performance levels for the different phases of LHC operation
Studies on combined momentum and betatron cleaning in the LHC
Collimation and halo cleaning for the LHC beams are performed separately for betatron and momentum losses, requiring two dedicated insertions for collimation. Betatron cleaning is performed in IR7 while momentum cleaning is performed in IR3. A study has been performed to evaluate the performance reach for a combined betatron and momentum cleaning system in IR3. The results are presented
Measurements of the effect of collisions on transverse beam halo diffusion in the Tevatron and in the LHC
Beam-beam forces and collision optics can strongly affect beam lifetime,
dynamic aperture, and halo formation in particle colliders. Extensive
analytical and numerical simulations are carried out in the design and
operational stage of a machine to quantify these effects, but experimental data
is scarce. The technique of small-step collimator scans was applied to the
Fermilab Tevatron collider and to the CERN Large Hadron Collider to study the
effect of collisions on transverse beam halo dynamics. We describe the
technique and present a summary of the first results on the dependence of the
halo diffusion coefficient on betatron amplitude in the Tevatron and in the
LHC.Comment: 4 pages, 2 figures. Submitted to the Proceedings of the ICFA
Mini-Workshop on Beam-beam Effects in Hadron Colliders (BB2013), Geneva,
Switzerland, 18-22 March 201
CLIC simulations from the start of the linac to the interaction point
Simulations for linear colliders are traditionally performed separately for the different sub-systems, like damping ring, bunch compressor, linac, and beam delivery. The beam properties are usually passed from one sub-system to the other via bunch charge, RMS transverse emittances, RMS bunch length, average energy and RMS energy spread. It is implicitly assumed that the detailed 6D correlations in the beam distribution are not relevant for the achievable luminosity. However, it has recently been shown that those correlations can have a strong effect on the beam-beam interaction. We present first results on CLIC simulations that integrate linac, beam delivery, and beam-beam interaction. These integrated simulations also allow a better simulation of time-dependent effects, like ground perturbations and interference between several beam-based feedbacks
Beam halo dynamics and control with hollow electron beams
Experimental measurements of beam halo diffusion dynamics with collimator
scans are reviewed. The concept of halo control with a hollow electron beam
collimator, its demonstration at the Tevatron, and its possible applications at
the LHC are discussed.Comment: 5 pages, 4 figures, in Proceedings of the 52nd ICFA Advanced Beam
Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams
(HB2012), Beijing, China, 17-21 September 201
Ion and proton loss paterns at the SPS and LHC
The collimation system of the LHC, primarily designed for proton operation, must function safely also with 208Pb82+ions. However, the particle-matter interaction in a collimator is different for heavy ions and protons. Heavy ions are subject to nuclear fragmentation, which creates a spectrum of secondary particles exiting the collimators with a Z/A ratio different from the nominal beam. These particles could be lost in a superconducting magnet and the induced heating might cause a quench. The program ICOSIM has previously been used to simulate these losses in the LHC. In this article, we present a benchmark of ICOSIM, using measured proton and ion loss maps in the SPS, and find a good qualitative agreement. We also make a quantitative comparison where the showers of the lost particles are simulated with the FLUKA code in the full magnet geometry. Here a discrepancy of a factor 3.8 is found. Estimation of expected uncertainties continues
- …
