23 research outputs found

    A reduced-complexity algorithm for combined equalization and decoding

    Full text link

    DT/T beyond linear theory

    Full text link
    The major contribution to the anisotropy of the temperature of the Cosmic Microwave Background (CMB) radiation is believed to come from the interaction of linear density perturbations with the radiation previous to the decoupling time. Assuming a standard thermal history for the gas after recombination, only the gravitational field produced by the linear density perturbations present on a Ω≠1\Omega\neq 1 universe can generate anisotropies at low z (these anisotropies would manifest on large angular scales). However, secondary anisotropies are inevitably produced during the nonlinear evolution of matter at late times even in a universe with a standard thermal history. Two effects associated to this nonlinear phase can give rise to new anisotropies: the time-varying gravitational potential of nonlinear structures (Rees-Sciama RS effect) and the inverse Compton scattering of the microwave photons with hot electrons in clusters of galaxies (Sunyaev-Zeldovich SZ effect). These two effects can produce distinct imprints on the CMB temperature anisotropy. We discuss the amplitude of the anisotropies expected and the relevant angular scales in different cosmological scenarios. Future sensitive experiments will be able to probe the CMB anisotropies beyong the first order primary contribution.Comment: plain tex, 16 pages, 3 figures. Proceedings of the Laredo Advance School on Astrophysics "The universe at high-z, large-scale structure and the cosmic microwave background". To be publised by Springer-Verla

    Resonant Spin-Flavor Conversion of Supernova Neutrinos and Deformation of the Electron Antineutrino Spectrum

    Get PDF
    The neutrino spin-flavor conversion of \bar\nu_e and \nu_\mu which is induced by the interaction of the Majorana neutrino magnetic moment and magnetic fields in the collapse-driven supernova is investigated in detail. We calculate the conversion probability by using the latest precollapse models of Woosley and Weaver (1995), and also those of Nomono and Hashimoto (1988), changing the stellar mass and metallicity in order to estimate the effect of the astrophysical uncertainties. Contour maps of the conversion probability are given for all the models as a function of neutrino mass squared difference and the neutrino magnetic moment times magnetic fields. It is shown that in the solar metallicity models some observational effects are expected with \Delta m^2 = 10^{-5}--10^{-1} [eV^2] and \mu_\nu >~ 10^{-12} (10^9 G / B_0) [\mu_B], where B_0 is the strength of the magnetic fields at the surface of the iron core. We also find that although the dependence on the stellar models or stellar mass is not so large, the metallicity of precollapse stars has considerable effects on this conversion. Such effects may be seen in a supernova in the Large or Small Magellanic Clouds, and should be taken into account when one considers an upper bound on \mu_\nu from the SN1987A data.Comment: 19 pages, LaTeX, using revtex. To appear in Phys. Rev. D. 16 figures attatche

    Transition Economies in the Middle East: the Syrian Experience

    Get PDF
    There have been no in depth studies of post Socialist transition in the Middle East. Syria’s experience is a useful one to explore given its historically important role in the region and its distinctive characteristics. The Syrian economic transition, from the early 1990s to 2011, was in two phases: an incremental liberalisation phase and a transition to Social Market Economy phase. During both phases, Syrian policy makers showed a preference for a gradualist approach to economic transition, rather than a big-bang approach. This was facilitated by oil revenues and subsidies from the Gulf States. The Syrian experience therefore has its own distinct characteristics, as well as elements in common with the transitions in other post Socialist economies

    Acute reperfusion therapies for acute ischemic stroke patients with unknown time of symptom onset or in extended time windows: an individualized approach

    No full text
    Recent randomized controlled clinical trials (RCTs) have revolutionized acute ischemic stroke care by extending the use of intravenous thrombolysis and endovascular reperfusion therapies in time windows that have been originally considered futile or even unsafe. Both systemic and endovascular reperfusion therapies have been shown to improve outcome in patients with wake-up strokes or symptom onset beyond 4.5 h for intravenous thrombolysis and beyond 6 h for endovascular treatment; however, they require advanced neuroimaging to select stroke patients safely. Experts have proposed simpler imaging algorithms but high-quality data on safety and efficacy are currently missing. RCTs used diverse imaging and clinical inclusion criteria for patient selection during the dawn of this novel stroke treatment paradigm. After taking into consideration the dismal prognosis of nonrecanalized ischemic stroke patients and the substantial clinical benefit of reperfusion therapies in selected late presenters, we propose rescue reperfusion therapies for acute ischemic stroke patients not fulfilling all clinical and imaging inclusion criteria as an option in a subgroup of patients with clinical and radiological profiles suggesting low risk for complications, notably hemorrhagic transformation as well as local or remote parenchymal hemorrhage. Incorporating new data to treatment algorithms may seem perplexing to stroke physicians, since treatment and imaging capabilities of each stroke center may dictate diverse treatment pathways. This narrative review will summarize current data that will assist clinicians in the selection of those late presenters that will most likely benefit from acute reperfusion therapies. Different treatment algorithms are provided according to available neuroimaging and endovascular treatment capabilities. © The Author(s), 2021
    corecore