141 research outputs found

    Antibacterial activity of blue light against nosocomial wound pathogens growing planktonically and as mature biofilms

    Get PDF
    The blue wavelengths within the visible light spectrum are intrinisically antimicrobial and can photodynamically inactivate the cells of a wide spectrum of bacteria (Gram positive and negative) and fungi. Furthermore, blue light is equally effective against both drug-sensitive and -resistant members of target species and is less detrimental to mammalian cells than is UV radiation. Blue light is currently used for treating acnes vulgaris and Helicobacter pylori infections; the utility for decontamination and treatment of wound infections is in its infancy. Furthermore, limited studies have been performed on bacterial biofilms, the key growth mode of bacteria involved in clinical infections. Here we report the findings of a multicenter in vitro study performed to assess the antimicrobial activity of 400-nm blue light against bacteria in both planktonic and biofilm growth modes. Blue light was tested against a panel of 34 bacterial isolates (clinical and type strains) comprising Acinetobacter baumannii, Enterobacter cloacae, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, and Elizabethkingia meningoseptica. All planktonic-phase bacteria were susceptible to blue light treatment, with the majority (71%) demonstrating a ≥ 5-log10 decrease in viability after 15 to 30 min of exposure (54 J/cm2 to 108 J/cm2). Bacterial biofilms were also highly susceptible to blue light, with significant reduction in seeding observed for all isolates at all levels of exposure. These results warrant further investigation of blue light as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications

    Combination of copanlisib with cetuximab improves tumor response in cetuximab-resistant patient-derived xenografts of head and neck cancer

    Get PDF
    Despite recent advances, the treatment of head and neck squamous cell carcinoma (HNSCC) remains an area of high unmet medical need. HNSCC is frequently associated with either amplification or mutational changes in the PI3K pathway, making PI3K an attractive target particularly in cetuximab-resistant tumors. Here, we explored the antitumor activity of the selective, pan-class I PI3K inhibitor copanlisib with predominant activity towards PI3Kα and δ in monotherapy and in combination with cetuximab using a mouse clinical trial set-up with 33 patient-derived xenograft (PDX) models with known HPV and PI3K mutational status and available data on cetuximab sensitivity. Treatment with copanlisib alone resulted in moderate antitumor activity with 12/33 PDX models showing either tumor stabilization or regression. Combination treatment with copanlisib and cetuximab was superior to either of the monotherapies alone in the majority of the models (21/33), and the effect was particularly pronounced in cetuximab-resistant tumors (14/16). While no correlation was observed between PI3K mutation status and response to either cetuximab or copanlisib, increased PI3K signaling activity evaluated through gene expression profiling showed a positive correlation with response to copanlisib. Together, these data support further investigation of PI3K inhibition in HNSCC and suggests gene expression patterns associated with PI3K signaling as a potential biomarker for predicting treatment responses

    Aggressive juvenile fibromatosis of the paranasal sinuses: case report and brief review

    Get PDF
    Desmoid fibromatoses are benign, slow growing fibroblastic neoplasms, arising from musculoaponeurotic stromal elements. Desmoids are characterized by local invasion, with a high rate of local recurrence and a tendency to destroy adjacent structures and organs. Desmoid fibromatoses are rare in children, and though they may occur in the head and neck region, are extremely rare in the paranasal sinuses. Here we report a case of extraabdominal desmoid fibromatosis in a seven-year-old boy involving the sphenoid sinus, one of only six published reports of desmoid fibromatosis of the paranasal sinuses. The expansile soft tissue mass eroded the walls of the sphenoid sinus as well as the posterior ethmoid air cells extending cephalad through the base of the skull. We discuss the clinicopathologic features of this lesion, including structural and ultrastructural characteristics, and we review the literature regarding treatment and outcome

    Aggressive fibromatosis of the head and neck: a new classification based on a literature review over 40 years (1968-2008)

    Full text link
    BACKGROUND: Fibromatosis is an aggressive fibrous tumor of unknown etiology that is, in some cases, lethal. Until now, there has been no particular classification for the head and neck. Therefore, the aim of the present study was to review the current literature in order to propose a new classification for future studies. METHODS: An evidence-based literature review was conducted from the last 40 years regarding aggressive fibromatosis in the head and neck. Studies that summarized patients' data without including individual data were excluded. RESULTS: Between 1968 and 2008, 179 cases with aggressive fibromatosis of the head and neck were published. The male to female ratio was 91 to 82 with a mean age of 16.87 years, and 57.32% of the described cases that involved the head and neck were found in patients under 11 years. The most common localization was the mandible, followed by the neck. All together, 143 patients were followed up, and in 43 (30.07%), a recurrence was seen. CONCLUSION: No clear prognostic factors for recurrence (age, sex, or localization) were observed. A new classification with regard to hormone receptors and bone involvement could improve the understanding of risk factors and thereby assist in future studies

    The Integrin Antagonist Cilengitide Activates αVβ3, Disrupts VE-Cadherin Localization at Cell Junctions and Enhances Permeability in Endothelial Cells

    Get PDF
    Cilengitide is a high-affinity cyclic pentapeptdic αV integrin antagonist previously reported to suppress angiogenesis by inducing anoikis of endothelial cells adhering through αVβ3/αVβ5 integrins. Angiogenic endothelial cells express multiple integrins, in particular those of the β1 family, and little is known on the effect of cilengitide on endothelial cells expressing αVβ3 but adhering through β1 integrins. Through morphological, biochemical, pharmacological and functional approaches we investigated the effect of cilengitide on αVβ3-expressing human umbilical vein endothelial cells (HUVEC) cultured on the β1 ligands fibronectin and collagen I. We show that cilengitide activated cell surface αVβ3, stimulated phosphorylation of FAK (Y397 and Y576/577), Src (S418) and VE-cadherin (Y658 and Y731), redistributed αVβ3 at the cell periphery, caused disappearance of VE-cadherin from cellular junctions, increased the permeability of HUVEC monolayers and detached HUVEC adhering on low-density β1 integrin ligands. Pharmacological inhibition of Src kinase activity fully prevented cilengitide-induced phosphorylation of Src, FAK and VE-cadherin, and redistribution of αVβ3 and VE-cadherin and partially prevented increased permeability, but did not prevent HUVEC detachment from low-density matrices. Taken together, these observations reveal a previously unreported effect of cilengitide on endothelial cells namely its ability to elicit signaling events disrupting VE-cadherin localization at cellular contacts and to increase endothelial monolayer permeability. These effects are potentially relevant to the clinical use of cilengitide as anticancer agent

    Serum Stabilities of Short Tryptophan- and Arginine-Rich Antimicrobial Peptide Analogs

    Get PDF
    Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the "antimicrobial centre" of bovine lactoferricin as well as an antimicrobial sequence obtained through the screening of a hexapeptide combinatorial library.HPLC, mass spectrometry and antimicrobial assays were carried out to explore the consequences of the modifications on the serum stability and microbicidal activity of the peptides. The results show that C-terminal amidation increases the antimicrobial activity but that it makes little difference to its proteolytic degradation in human serum. On the other hand, N-terminal acetylation decreases the peptide activities but significantly increases their protease resistance. Peptide cyclization of the hexameric peptides was found to be highly effective for both serum stability and antimicrobial activity. However the two cyclization strategies employed have different effects, with disulfide cyclization resulting in more active peptides while backbone cyclization results in more proteolytically stable peptides. However, the benefit of backbone cyclization did not extend to longer 11-mer peptides derived from the same region of lactoferricin. Mass spectrometry data support the serum stability assay results and allowed us to determine preferred proteolysis sites in the peptides. Furthermore, isothermal titration calorimetry experiments showed that the peptides all had weak interactions with albumin, the most abundant protein in human serum.Taken together, the results provide insight into the behavior of the peptides in human serum and will therefore aid in advancing antimicrobial peptide design towards systemic applications

    Low pressure plasma inactivation of Bacillus subtilis spores: insights into the mechanisms of spore resistance

    Get PDF
    Being the most resistant form of a biological system, spores of Bacillus subtilis are very resistant against a broad spectrum of sterilization methods and, therefore, are commonly used as a biological indicator in order to verify the functionality of a sterilization procedure. The process of low-pressure plasma sterilization is a promising alternative to conventional sterilization methods as it is extremely fast, efficient and gentle to heat-sensitive materials. Active plasma species contain a high degree of sporicidal UV/VUV-radiation, as well as charged particles and free radicals, which exert detrimental effects on microorganisms. In this study we present novel insights into the key factors involved in spore inactivation by low pressure plasma sterilization using a double inductively-coupled plasma reactor

    Understanding the molecular mechanisms involved in the spore inactivation by plasma sterilization

    Get PDF
    Being the most resistant form of a biological system, spores of Bacillus subtilis are very resistant against a broad spectrum of sterilization methods and, therefore, are commonly used as a biological indicator in order to verify the functionality of a sterilization procedure. The process of low-pressure plasma sterilization is a promising alternative to conventional sterilization methods as it is extremely fast, efficient and gentle to heatsensitive materials. Active plasma species contain a high degree of sporicidal UV/VUV-radiation, as well as charged particles and free radicals, which exert detrimental effects on microorganisms. In this study we present novel insights into the key factors involved in spore inactivation by low pressure plasma sterilization using a double inductively-coupled plasma reactor. In order to standardize the assessment of spore inactivation efficiencies by plasma discharges, an electrically operated deposition device was developed, allowing fast, reproducible, and homogeneous preparation of B. subtilis spore in monolayers on surfaces leading to more reliable investigations. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. A systematic analysis of B. subtilis spores lacking individual coat and crust layers - the first barrier to environmental influences – revealed the coat to be a major factor in spore resistance towards plasma treatment (Raguse et al., 2016). In order to gain a better understanding of the complex molecular mechanisms involved in the inactivation by plasma sterilization processes, we analyzed plasma-induced DNA lesions in vitro, identified general and spore-specific DNA lesions, and characterized different DNA repair mechanisms during spore revival after plasma treatment
    corecore