89 research outputs found

    Wavelengths and Energy Levels of the Upper Levels of Singly Ionized Nickel (Ni ii) from 3<i>d</i><sup>8</sup>(<sup>3</sup><i>F</i>)5<i>f</i> to 3d<sup>8</sup>(<sup>3</sup><i>F)</i>9<i>s</i>

    Get PDF
    Using high-resolution spectra of Ni ii recorded using Fourier transform (FT) spectroscopy of continuous, nickel-helium hollow cathode discharge sources in the region 143-5555 nm (1800-70,000 cm−1, the analysis of 1016 Ni ii lines confirmed and optimized 206 previously reported energy levels of the (3 F) parent term, from 3d 8(3 F)5f to 3d 8(3 F)9s, lying between 122,060 and 138,563 cm−1. The uncertainties of these levels have been improved by at least an order of magnitude compared with their previously reported values. With the increased resolution and spectral range of the FT measurements, compared to previously published grating spectra, we were able to extend our analysis to identify and establish 33 new energy levels of Ni ii, which are reported here for the first time. Eigenvector compositions of all revised and newly established energy levels were calculated using the orthogonal operator method. In addition, an improved ionization energy of 146,541.35 ± 0.15 cm−1 for Ni ii, using highly excited levels of the 3d 8(3 F)5g, 3d 8(3 F)6g, and 3d 8(3 F)6h configurations, has been derived.</p

    A Comprehensive X-ray Absorption Model for Atomic Oxygen

    Get PDF
    An analytical formula is developed to represent accurately the photoabsorption cross section of O I for all energies of interest in X-ray spectral modeling. In the vicinity of the Kedge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models

    New Ritz wavelengths and transition probabilities for parity-forbidden, singly ionized nickel [Ni II] lines of astrophysical interest

    Get PDF
    We report accurate Ritz wavelengths for parity-forbidden [Ni II] transitions, derived from energy levels determined using high-resolution Fourier transform spectroscopy. Transitions between the 18 lowest Ni II energy levels of even-parity produced Ritz wavelengths for 126 parity-forbidden lines. Uncertainties for the Ritz wavelengths derived in this work are up to two orders of magnitude lower than previously published values. Transition probabilities were calculated using the semi-empirical orthogonal operator method, with uncertainties ranging from approximately 1 per cent for strong M1 lines and up to 10 per cent for weak E2 lines. Accurate forbidden line wavelengths and transition probabilities, particularly for lines in the infrared, are important in the analyses of low-density astrophysical plasmas, such as supernova remnants, planetary nebulae, and active galactic nuclei

    Keck Hires Observations of the QSO First J104459.6+365605: Evidence for a Large Scale Outflow

    Full text link
    This paper presents an analysis of a Keck HIRES spectrum of the QSO FIRST J104459.6+365605. The line of sight towards the QSO contains two clusters of outflowing clouds that give rise to broad blue shifted absorption lines. The outflow velocities of the clouds range from -200 to -1200 km/s and from -3400 to -5200 km/s, respectively. The width of the individual absorption lines ranges from 50 to more than 1000 km/s. The most prominent absorption lines are those of Mg II, Mg I, and Fe II. The low ionization absorption lines occur at the same velocities as the most saturated Mg II lines, showing that the Fe II, Mg I and Mg II line forming regions must be closely associated. Many absorption lines from excited states of Fe II are present, allowing a determination of the population of several low lying energy levels. From this we determine an electron density in the Fe II line forming regions of 4000 per cubic cm. Modelling the ionization state of the absorbing gas with this value of the electron density as a constraint, we find that the distance between the Fe II and Mg I line forming region and the continuum source is of order 700 parsec. From the correspondence in velocity between the Fe II, Mg I and Mg II lines we infer that the Mg II lines must be formed at the same distance. The Mg II absorption fulfills the criteria for Broad Absorption Lines defined by Weymann et al. (1991). This large distance is surprising, since BALs are generally thought to be formed in outflows at a much smaller distance from the nucleus.Comment: 34 pages, 11 figures. Accepted by The Astrophysical Journa

    Magnesium and silicon in interstellar dust: an X-ray overview

    Full text link
    The dense Galactic environment is a large reservoir of interstellar dust. Therefore, this region represents a perfect laboratory to study the properties of the cosmic dust grains. X-rays are the most direct way to detect the interaction of light with dust present in these dense environments. The interaction between the radiation and the interstellar matter imprints specific absorption features in the X-ray spectrum. We study them with the aim of defining the chemical composition, the crystallinity and structure of the dust grains which populate the inner regions of the Galaxy. We investigate the magnesium and the silicon K-edges detected in the Chandra/HETG spectra of eight bright X-ray binaries, distributed in the neighbourhood of the Galactic centre. We model the two spectral features using accurate extinction cross sections of silicates, that we have measured at the synchrotron facility Soleil, France. Near the Galactic centre magnesium and silicon show abundances similar to the solar ones and they are highly depleted from the gas phase (δMg>0.90\delta_{\rm{Mg}}>0.90 and δSi>0.96\delta_{\rm{Si}}>0.96). We find that amorphous olivine with a composition of MgFeSiO4\rm MgFeSiO_{4} is the most representative compound along all lines of sight according to our fits. The contribution of Mg-rich silicates and quartz is low (less than 10%10\%). On average we observe a percentage of crystalline dust equal to 11%11\%. For the extragalactic source LMC X-1, we find a preference for forsterite, a magnesium-rich olivine. Along this line of sight we also observe an underabundance of silicon ASi/ALMC=0.5±0.2A_{\rm Si}/A_{\rm LMC} = 0.5\pm0.2.Comment: 16 pages, 7 figures, recommended for publication in Astronomy and Astrophysic

    Model atmospheres of chemically peculiar stars: Self-consistent empirical stratified model of HD24712

    Full text link
    High-resolution spectra of some chemically peculiar stars clearly demonstrate the presence of strong abundance gradients in their atmospheres. However, these inhomogeneities are usually ignored in the standard scheme of model atmosphere calculations, braking the consistency between model structure and spectroscopically derived abundance pattern. In this paper we present first empirical self-consistent stellar atmosphere model of roAp star HD24712, with stratification of chemical elements included, and which is derived directly from the observed profiles of spectral lines without time-consuming simulations of physical mechanisms responsible for these anomalies. We used the LLmodels stellar model atmosphere code and DDAFIT minimization tool for analysis of chemical elements stratification and construction of self-consistent atmospheric model. Empirical determination of Pr and Nd stratification in the atmosphere of HD24712 is based on NLTE line formation for Prii/iii and Ndii/iii with the use of the DETAIL code. Based on iterative procedure of stratification analysis and subsequent re-calculation of model atmosphere structure we constructed a self-consistent model of HD24712, i.e. the model which temperature-pressure structure is consistent with results of stratification analysis. It is shown that stratification of chemical elements leads to the considerable changes in model structure as to compare with non-stratified homogeneous case. We find that accumulation of REE elements allows for the inverse temperature gradient to be present in upper atmosphere of the star with the maximum temperature increase of about 600K.Comment: Comments: Accepted by A&A, 16 pages, 10 figures, 3 table

    Calibration and in orbit performance of the reflection grating spectrometer onboard XMM-Newton

    Full text link
    Context: XMM-Newton was launched on 10 December 1999 and has been operational since early 2000. One of the instruments onboard XMM-Newton is the reflection grating spectrometer (RGS). Two identical RGS instruments are available, with each RGS combining a reflection grating assembly (RGA) and a camera with CCDs to record the spectra. Aims: We describe the calibration and in-orbit performance of the RGS instrument. By combining the preflight calibration with appropriate inflight calibration data including the changes in detector performance over time, we aim at profound knowledge about the accuracy in the calibration. This will be crucial for any correct scientific interpretation of spectral features for a wide variety of objects. Methods: Ground calibrations alone are not able to fully characterize the instrument. Dedicated inflight measurements and constant monitoring are essential for a full understanding of the instrument and the variations of the instrument response over time. Physical models of the instrument are tuned to agree with calibration measurements and are the basis from which the actual instrument response can be interpolated over the full parameter space. Results: Uncertainties in the instrument response have been reduced to < 10% for the effective area and < 6 mA for the wavelength scale (in the range from 8 A to 34 A. The remaining systematic uncertainty in the detection of weak absorption features has been estimated to be 1.5%. Conclusions: Based on a large set of inflight calibration data and comparison with other instruments onboard XMM-Newton, the calibration accuracy of the RGS instrument has been improved considerably over the preflight calibrations.Comment: Accepted for publication in Astronomy and Astrophysics, Astronomical instrumentation sectio

    Interstellar Iron and Silicon Depletions in Translucent Sight Lines

    Full text link
    We report interstellar FeII and SiII column densities toward six translucent sight lines (A_V >~ 1) observed with the Space Telescope Imaging Spectrograph (STIS). The abundances were determined from the absorption of SiII] at 2335 Angstroms, and several weak Fe transitions including the first reported detections of the 2234 Angstrom line. We derive an empirical f-value for the FeII 2234 Angstrom transition of log(f lambda) = -1.54 +/- 0.05. The observed sight lines sample a variety of extinction characteristics as indicated by their R_V values, which range from 2.6 - 5.8. The dust-phase abundances of both Si and Fe are positively correlated with the small-grain population (effective radii smaller than a few hundred micron) toward the targets. The physical conditions along the sight lines suggest that this relationship may be due to differences in the survival of small particles in some interstellar environments. The chemical composition of the small grains could either resemble dust mantles or be silicate rich.Comment: accepted for publication in Ap

    A self-consistent empirical model atmosphere, abundance and stratification analysis of the benchmark roAp star alpha Circini

    Full text link
    Chemically peculiar (CP) stars are unique natural laboratories for investigation of the microscopic diffusion processes of chemical elements. The element segregation under the influence of gravity and radiation pressure leads to the appearance of strong abundance gradients in the atmospheres of CP stars. Consequently, the atmospheric temperature-pressure structure of these objects could deviate significantly from the atmospheres of normal stars with homogeneous abundances. In this study we performed a self-consistent, empirical model atmosphere study of the brightest rapidly oscillating Ap star alpha Cir. We account for chemical stratification in the model atmosphere calculations and assess the importance of non-uniformed vertical element distribution on the model structure, energy distribution and hydrogen line profiles. Based on an iterative procedure of the chemical abundance analysis of 52 ions of 35 elements, stratification modeling of 4 elements (Si, Ca, Cr and Fe) and subsequent re-calculations of the atmospheric structure, we derived a new model atmosphere of alpha Cir, which is consistent with the inferred atmospheric chemistry of the star. We find Teff=7500 K, logg=4.1, and demonstrate that chemical stratification has a noticeable impact on the model structure and modifies the formation of the hydrogen Balmer lines. Our spectroscopically determined Teff of alpha Cir agrees with the fundamental effective temperature of this star. This shows that temperatures inferred in detailed spectroscopic analyses of cool magnetic CP stars are not affected by a large systematic bias.Comment: 14 pages, 11 figures; accepted for publication in Astronomy & Astrophysic
    corecore