1,290,834 research outputs found

    Thermodynamics of D-brane Probes

    Get PDF
    We discuss the dynamics and thermodynamics of particle and D-brane probes moving in non-extremal black hole/brane backgrounds. When a probe falls from asymptotic infinity to the horizon, it transforms its potential energy into heat, TdSTdS, which is absorbed by the black hole in a way consistent with the first law of thermodynamics. We show that the same remains true in the near-horizon limit, for BPS probes only, with the BPS probe moving from AdS infinity to the horizon. This is a quantitative indication that the brane-probe reaching the horizon corresponds to thermalization in gauge theory. It is shown that this relation provides a way to reliably compute the entropy away from the extremal limit (towards the Schwarzschild limit).Comment: 12 pages; Based on talks presented at the midterm meeting of the TMR network "Physics beyond the standard model," held in Trieste in March 1999, and at the 1998 Corfu Summer Institute on Elementary Particle Physic

    Distance to U Pegasi by the DDE Algorithm

    Get PDF
    A distance is found for the W UMa type binary U Pegasi, with a newly modified version of the Wilson-Devinney program (W-D) that makes use of the direct distance estimation (DDE) algorithm. The reported distance of d = 123.6pc is an average based on solutions for B and V data and a primary star temperature of 5800K. Standardized light curves (not differential), radial velocities, and a spectroscopic primary star temperature are input to the pro- gram. Differential corrections were performed for each light curve band along with the velocities for two primary temperatures that span 100K. Log10d is a model parameter like many others that are adjustable in W-D. The eclipsing binary distance agrees with the Hipparcos parallax distance and is more precise.Comment: 2 pages, 1 table, International Conference: Binaries - Key to Comprehension of the Universe, Brno, Czech Republic June 8-12, 200

    Elemental abundances in corotating events

    Get PDF
    Large, persistent solar-wind streams in 1973 and 1974 produced corotating interaction regions which accelerated particles to energies of a few MeV/nucleon. The proton to helium ratio (H/He) reported was remarkably constant at a value (22 + or - 5) equal to that in the solar wind (32 + or - 3), suggesting that particles were being accelerated directly out of the solar wind. Preliminary results from a similar study approximately 11 years (i.e., one solar cycle) later are reported. Corotating events were identified by surveying the solar wind data, energetic particle time-histories and anisotropies. This data was all obtained from the ISEE-3/ICE spacecraft. These events also show H/He ratios similar to that in the solar wind. In addition, other corotating events were examined at times when solar flare events could have injected particles into the corresponding corotating interaction regions. It was found that in these cases there is evidence for H/He ratios which are significantly different from that of the solar wind but which are consistent with the range of values found in solar flare events
    corecore