1,196 research outputs found

    Graphical explanation in an expert system for Space Station Freedom rack integration

    Get PDF
    The rationale and methodology used to incorporate graphics into explanations provided by an expert system for Space Station Freedom rack integration is examined. The rack integration task is typical of a class of constraint satisfaction problems for large programs where expertise from several areas is required. Graphically oriented approaches are used to explain the conclusions made by the system, the knowledge base content, and even at more abstract levels the control strategies employed by the system. The implemented architecture combines hypermedia and inference engine capabilities. The advantages of this architecture include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. The graphical techniques employed range from simple statis presentation of schematics to dynamic creation of a series of pictures presented motion picture style. User models control the type, amount, and order of information presented

    The Madingley general ecosystem model predicts bushmeat yields, species extinction rates and ecosystem-level impacts of bushmeat harvesting

    Get PDF
    Traditional approaches to guiding decisions about harvesting bushmeat often employ single-species population dynamic models, which require species- and location-specific data, are missing ecological processes such as multi-trophic interactions, cannot represent multi-species harvesting and cannot predict the broader ecosystem impacts of harvesting. In order to explore an alternative approach to devising sustainable harvesting strategies, we employ the Madingley general ecosystem model, which can simulate ecosystem dynamics in response to multi-species harvesting given nothing other than location-specific climate data. We used the model to examine yield, extinctions and broader ecosystem impacts, for a range of harvesting intensities of duiker-sized endothermic herbivores. Duiker antelope (such as Cephalophus callipygus and Cephalophus dorsalis) are the most heavily hunted species in sub-Saharan Africa, contributing 34–95% of all bushmeat in the Congo Basin. Across a range of harvesting rates, the Madingley model gave estimates for optimal harvesting rate, and extinction rate, that were qualitatively and quantitatively similar to the estimates from conventional single-species Beverton–Holt model. Predicted yields were somewhat greater (around five times, on average) for the Madingley model than the Beverton–Holt, which is partly attributable to the fact that the Madingley simulates multi-species harvesting from an initially pristine ecosystem. Also, the Madingley model predicted a background local extinction probability for the target species of at least 10%. At medium and high levels of harvesting of duiker-sized herbivores, the Madingley model predicted statistically significant, but moderate, reductions in the densities of the targeted functional group; increases in small-bodied herbivores; decreases in large-bodied carnivores; and minimal ecosystem-level impacts overall. The results illustrate how general ecosystem models such as the Madingley model could potentially be used more widely to help estimate sustainable harvesting rates, bushmeat yields and broader ecosystem impacts across different locations and target species

    Statistical correlation analysis for comparing vibration data from test and analysis

    Get PDF
    A theory was developed to compare vibration modes obtained by NASTRAN analysis with those obtained experimentally. Because many more analytical modes can be obtained than experimental modes, the analytical set was treated as expansion functions for putting both sources in comparative form. The dimensional symmetry was developed for three general cases: nonsymmetric whole model compared with a nonsymmetric whole structural test, symmetric analytical portion compared with a symmetric experimental portion, and analytical symmetric portion with a whole experimental test. The theory was coded and a statistical correlation program was installed as a utility. The theory is established with small classical structures

    Design and implementation of a compliant robot with force feedback and strategy planning software

    Get PDF
    Force-feedback robotics techniques are being developed for automated precision assembly and servicing of NASA space flight equipment. Design and implementation of a prototype robot which provides compliance and monitors forces is in progress. Computer software to specify assembly steps and makes force feedback adjustments during assembly are coded and tested for three generically different precision mating problems. A model program demonstrates that a suitably autonomous robot can plan its own strategy

    Synergistic impacts of habitat loss and fragmentation on model ecosystems

    Get PDF
    Habitat loss and fragmentation are major threats to biodiversity, yet separating their effects is challenging. We use a multi-trophic, trait-based, and spatially explicit general ecosystem model to examine the independent and synergistic effects of these processes on ecosystem structure. We manipulated habitat by removing plant biomass in varying spatial extents, intensities, and configurations. We found that emergent synergistic interactions of loss and fragmentation are major determinants of ecosystem response, including population declines and trophic pyramid shifts. Furthermore, trait-mediated interactions, such as a disproportionate sensitivity of large-sized organisms to fragmentation, produce significant effects in shaping responses. We also show that top-down regulation mitigates the effects of land use on plant biomass loss, suggesting that models lacking these interactions—including most carbon stock models—may not adequately capture land-use change impacts. Our results have important implications for understanding ecosystem responses to environmental change, and assessing the impacts of habitat fragmentation

    The wagon wheel illusion in movies and reality.

    Full text link

    A new neurosurgical tool incorporating differential geometry and cellular automata techniques

    Get PDF
    Using optical coherence imaging, it is possible to visualize seizure progression intraoperatively. However, it is difficult to pinpoint an exact epileptic focus. This is crucial in attempts to minimize the amount of resection necessary during surgical therapeutic interventions for epilepsy and is typically done approximately from visual inspection of optical coherence imaging stills. In this paper, we create an algorithm with the potential to pinpoint the source of a seizure from an optical coherence imaging still. To accomplish this, a grid is overlaid on optical coherence imaging stills. This then serves as a grid for a two-dimensional cellular automation. Each cell is associated with a Riemannian curvature tensor representing the curvature of the brain's surface in all directions for a cell. Cells which overlay portions of the image which show neurons that are firing are considered "depolarized"

    Usability of a Jamming Mobile with 3-6 Year-Old Children for Enhancing Feelings of Social Inclusion and Facilitating Musical Learning

    Get PDF
    JamMo is a new musical education software. An inter-disciplinary team from 5 different EU countries developed the software as part of an EU-funded project. The software was developed to facilitate feelings of social inclusion and musical collaboration amongst children aged 3-12. A pilot study was conducted with a version of the game aimed at 3-6 years. Twenty-eight children aged eight participated in the pilot study. Five sessions were delivered with JamMo over the period of eight weeks at a primary school in London, each focussing on a different JamMo game (composition, singing or improvisation). The games were played on mobile phones and on a desktop computer. Prior and subsequent to the sessions, a questionnaire on the children's musical and IT backgrounds was administered, as well as an instrument for assessing social inclusion. Observations and video recording were conducted during the sessions. Statistical analysis was carried out. The results showed that children who were classified as socially excluded prior to the sessions felt significantly more socially included subsequent to them. Observation and video data illustrated that such children were completely immersed in the sessions and willing to collaborate with their peers. The participant children's musical ability and their attitudes towards music and IT activities had considerably improved during the sessions. Thus, JamMo 3-6 could be used by educators, parents and other professionals working with young children in order to facilitate musical learning, collaboration and feelings of social inclusion in children
    • …
    corecore