20 research outputs found

    Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis

    Get PDF
    The serotonergic system forms a diffuse network within the central nervous system and plays a significant role in the regulation of mood and cognition. Manipulation of tryptophan levels, acutely or chronically, by depletion or supplementation, is an experimental procedure for modifying peripheral and central serotonin levels. These studies have allowed us to establish the role of serotonin in higher order brain function in both preclinical and clinical situations and have precipitated the finding that low brain serotonin levels are associated with poor memory and depressed mood. The gut-brain axis is a bi-directional system between the brain and gastrointestinal tract, linking emotional and cognitive centres of the brain with peripheral functioning of the digestive tract. An influence of gut microbiota on behaviour is becoming increasingly evident, as is the extension to tryptophan and serotonin, producing a possibility that alterations in the gut may be important in the pathophysiology of human central nervous system disorders. In this review we will discuss the effect of manipulating tryptophan on mood and cognition, and discuss a possible influence of the gut-brain axis

    Metabolic power in hurling with respect to position and halves of match-play.

    Get PDF
    The current investigation compared the metabolic power and energetic characteristics in team sports with respect to positional lines and halves of match-play. Global positioning system (GPS) technology data were collected from 22 elite competitive hurling matches over a 3-season period. A total of 250 complete match-files were recorded with players split into positional groups of full-back; half-back; midfield; half-forward; full-forward. Raw GPS data were exported into a customized spreadsheet that provided estimations of metabolic power and speed variables across match-play events (average metabolic power [Pmet], high metabolic load distance [HMLD], total distance, relative distance, high-speed distance, maximal speed, accelerations, and deceleration). Pmet, HMLD, total, relative and high-speed distance were 8.9 ± 1.6 W·kg-1, 1457 ± 349 m, 7506 ± 1364 m, 107 ± 20 m·min-1 and 1169 ± 260 m respectively. Half-backs, midfielders and half-forwards outperformed full-backs (Effect Size [ES] = 1.03, 1.22 and 2.07 respectively), and full-forwards in Pmet (Effect Size [ES] = 1.70, 2.07 and 1.28 respectively), and HMLD (full-backs: ES = -1.23, -1.37 and -0.84 respectively, and full-forwards: ES = -1.77, -2.00 and -1.38 respectively). Half-backs (ES = -0.60), midfielders (ES = -0.81), and half-forwards (ES = -0.74) experienced a second-half temporal decrement in HMLD. The current investigation demonstrates that metabolic power may increase our understanding of the match-play demands placed on elite hurling players. Coaches may utilize these findings to construct training drills that replicate match-play demands

    Motility changes induced by intraluminal FeSO4 in guinea pig jejunum

    No full text
    Background: Dietary iron supplementation is associated with gastrointestinal (GI) side effects including vomiting, nausea, and diarrhea. Although inorganic iron in high concentrations may be damaging to the intestinal mucosa, we hypothesize that there are physiological effects on the GI tract that occur at concentrations achieved by supplementation. Thus, our aim was to investigate the effect of intraluminal ferrous sulfate (FeSO4) on jejunal motility. Methods: Segments of guinea pig jejunum were cannulated and the intraluminal pressure recorded with a transducer, while movements were recorded with a video camera. Peristaltic threshold was the oral pressure that evoked four consecutive propulsive contractions. The nutrients decanoic acid (1 mM), l-phenylalanine (50 mM), or the micronutrient FeSO4 (1 mM) were infused intraluminally. We also tested the effect of FeSO4 on electrochemically detected serotonin (5-HT, 5-hydroxytryptamine) released from in vitro tissues, both at rest and following mechanical stimulation. Key Results: The jejuna peristaltic threshold was significantly decreased by all three nutrients: FeSO4: 31 ± 2-23 ± 3 mmH2O; decanoic acid: 27 ± 2-14 ± 2 mmH2O; and l-phenylalanine: 30 ± 3-14 ± 3mmH2O. Of the three, only decanoic acid induced segmentation, while FeSO4 inhibited decanoic acid-induced segmentation. Resting 5-HT release was increased by FeSO4 (128% of control), but mechanically evoked 5-HT release was reduced (70% of control). Conclusions & Inferences: These data suggest that some luminal effects of inorganic iron on jejunal motility could be mediated through a pathway involving altered release of 5-HT. A better understanding of the interaction between luminal iron and 5-HT containing enterochromaffin cells could improve iron supplementation strategies, thus reducing side effects
    corecore