244 research outputs found

    Corneal Pachymetry by AS-OCT after Descemet's Membrane Endothelial Keratoplasty

    Get PDF
    Corneal thickness (pachymetry) maps can be used to monitor restoration of corneal endothelial function, for example after Descemet's membrane endothelial keratoplasty (DMEK). Automated delineation of the corneal interfaces in anterior segment optical coherence tomography (AS-OCT) can be challenging for corneas that are irregularly shaped due to pathology, or as a consequence of surgery, leading to incorrect thickness measurements. In this research, deep learning is used to automatically delineate the corneal interfaces and measure corneal thickness with high accuracy in post-DMEK AS-OCT B-scans. Three different deep learning strategies were developed based on 960 B-scans from 50 patients. On an independent test set of 320 B-scans, corneal thickness could be measured with an error of 13.98 to 15.50 micrometer for the central 9 mm range, which is less than 3% of the average corneal thickness. The accurate thickness measurements were used to construct detailed pachymetry maps. Moreover, follow-up scans could be registered based on anatomical landmarks to obtain differential pachymetry maps. These maps may enable a more comprehensive understanding of the restoration of the endothelial function after DMEK, where thickness often varies throughout different regions of the cornea, and subsequently contribute to a standardized postoperative regime.Comment: Fixed typo in abstract: The development set consists of 960 B-scans from 50 patients (instead of 68). The B-scans from the other 18 patients were used for testing onl

    "Is social inclusion through PE, sport and PA still a rhetoric?" evaluating the relationship between physical education, sport and social inclusion

    Get PDF
    This Special Issue is part of Educational Review’s Hall of Fame, comprising the journal’s most read and highly cited papers. As part of this I will be critiquing a milestone paper within the field(s) of Sport, PE and (I will extend to) PA by Professor Richard Bailey. The paper has been amongst the most-cited in the journal and I have personally cited the paper numerous times in my own work thus far. Upon its original publication (nearly 13 years ago), the article (managed to provide a very useful distinction between PE and sport (and PA), which is important given the constant slippage between the terms in many articles since. In this response article, I will try to provide a brief summary of the paper from Bailey, but at the same time examine closely the notion of social inclusion through sport and PE by summarising work that has subsequently been conducted. I will conclude by summarising that some 13 years later spurious claims about effective inclusive practices through sport abound, and we still lack clear evidence to support the rhetoric about the ways in which sport and PE can contribute to social inclusion

    Direct Classification of Type 2 Diabetes From Retinal Fundus Images in a Population-based Sample From The Maastricht Study

    Get PDF
    Type 2 Diabetes (T2D) is a chronic metabolic disorder that can lead to blindness and cardiovascular disease. Information about early stage T2D might be present in retinal fundus images, but to what extent these images can be used for a screening setting is still unknown. In this study, deep neural networks were employed to differentiate between fundus images from individuals with and without T2D. We investigated three methods to achieve high classification performance, measured by the area under the receiver operating curve (ROC-AUC). A multi-target learning approach to simultaneously output retinal biomarkers as well as T2D works best (AUC = 0.746 [±\pm0.001]). Furthermore, the classification performance can be improved when images with high prediction uncertainty are referred to a specialist. We also show that the combination of images of the left and right eye per individual can further improve the classification performance (AUC = 0.758 [±\pm0.003]), using a simple averaging approach. The results are promising, suggesting the feasibility of screening for T2D from retinal fundus images.Comment: to be published in the proceeding of SPIE - Medical Imaging 2020, 6 pages, 1 figur

    Registration accuracy for MR images of the prostate using a subvolume based registration protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, there has been a considerable research effort concerning the integration of magnetic resonance imaging (MRI) into the external radiotherapy workflow motivated by the superior soft tissue contrast as compared to computed tomography. Image registration is a necessary step in many applications, e.g. in patient positioning and therapy response assessment with repeated imaging. In this study, we investigate the dependence between the registration accuracy and the size of the registration volume for a subvolume based rigid registration protocol for MR images of the prostate.</p> <p>Methods</p> <p>Ten patients were imaged four times each over the course of radiotherapy treatment using a T2 weighted sequence. The images were registered to each other using a mean square distance metric and a step gradient optimizer for registration volumes of different sizes. The precision of the registrations was evaluated using the center of mass distance between the manually defined prostates in the registered images. The optimal size of the registration volume was determined by minimizing the standard deviation of these distances.</p> <p>Results</p> <p>We found that prostate position was most uncertain in the anterior-posterior (AP) direction using traditional full volume registration. The improvement in standard deviation of the mean center of mass distance between the prostate volumes using a registration volume optimized to the prostate was 3.9 mm (p < 0.001) in the AP direction. The optimum registration volume size was 0 mm margin added to the prostate gland as outlined in the first image series.</p> <p>Conclusions</p> <p>Repeated MR imaging of the prostate for therapy set-up or therapy assessment will both require high precision tissue registration. With a subvolume based registration the prostate registration uncertainty can be reduced down to the order of 1 mm (1 SD) compared to several millimeters for registration based on the whole pelvis.</p
    corecore