342 research outputs found

    Mitochondrial precursor proteins are imported through a hydrophilic membrane environment

    Get PDF
    We have analyzed how translocation intermediates of imported mitochondrial precursor proteins, which span contact sites, interact with the mitochondrial membranes. F1-ATPase subunit β(F1β) was trapped at contact sites by importing it into Neurospora mitochondria in the presence of low levels of nucleoside triphosphates. This F1β translocation intermediate could be extracted from the membranes by treatment with protein denaturants such as alkaline pH or urea. By performing import at low temperatures, the ADP/ATP carrier was accumulated in contact sites of Neurospora mitochondria and cytochrome b2 in contact sites of yeast mitochondria. These translocation intermediates were also extractable from the membranes at alkaline pH. Thus, translocation of precursor proteins across mitochondrial membranes seems to occur through an environment which is accessible to aqueous perturbants. We propose that proteinaceous structures are essential components of a translocation apparatus present in contact sites

    Biogenesis of mitochondrial porin

    Get PDF
    We review here the present knowledge about the pathway of import and assembly of porin into mitochondria and compare it to those of other mitochondrial proteins. Porin, like all outer mitochondrial membrane proteins studied so far is made as a precursor without a cleavble lsquosignalrsquo sequence; thus targeting information must reside in the mature sequence. At least part of this information appears to be located at the amino-terminal end of the molecule. Transport into mitochondria can occur post-translationally. In a first step, the porin precursor is specifically recognized on the mitochondrial surface by a protease sensitive receptor. In a second step, porin precursor inserts partially into the outer membrane. This step is mediated by a component of the import machinery common to the import pathways of precursor proteins destined for other mitochondrial subcompartments. Finally, porin is assembled to produce the functional oligomeric form of an integral membrane protein wich is characterized by its extreme protease resistance

    Beyond effectiveness. The adversities of implementing a fortification program : a case study on the quality of iron fortification of fish and soy sauce in Cambodia

    Get PDF
    Fortification of fish and soy sauces is a cost-effective strategy to deliver and increase iron intake in the Cambodian diet, as both are widely consumed by the entire population. In order to qualify as fortified sauces recognized by international regulations, iron content must be between 230 and 460 mg/L, whilst nitrogen and salt should contain no less than 10 g/L and 200 g/L respectively. This survey aims to analyze the progress of the fortification program. Through a better understanding of its obstacles and successes, the paper will then consider approaches to strengthen the program. Two hundred and fifty two samples were collected from 186 plants and 66 markets in various provinces. They were then analyzed for iron, nitrogen and salt content. The study demonstrates that 74% of fortified fish and soy sauces comply with Cambodian regulations on iron content. 87% and 53.6% of the collected samples do not have adequate level of nitrogen and salt content, respectively. The paper will discuss additional efforts that need to be implemented to ensure the sustainability of the project, including the need to: (i) comply with International Codex; (ii) adopt mandatory legislation; and (iii) ensure enforcement

    Mitochondrial protein import: precursor oxidation in a ternary complex with disulfide carrier and sulfhydryl oxidase

    Get PDF
    The biogenesis of mitochondrial intermembrane space proteins depends on specific machinery that transfers disulfide bonds to precursor proteins. The machinery shares features with protein relays for disulfide bond formation in the bacterial periplasm and endoplasmic reticulum. A disulfide-generating enzyme/sulfhydryl oxidase oxidizes a disulfide carrier protein, which in turn transfers a disulfide to the substrate protein. Current views suggest that the disulfide carrier alternates between binding to the oxidase and the substrate. We have analyzed the cooperation of the disulfide relay components during import of precursors into mitochondria and identified a ternary complex of all three components. The ternary complex represents a transient and intermediate step in the oxidation of intermembrane space precursors, where the oxidase Erv1 promotes disulfide transfer to the precursor while both oxidase and precursor are associated with the disulfide carrier Mia40

    Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis

    Get PDF
    The bacterial PorB porin, an ATP-binding beta-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (delta psi m). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of beta-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of delta psi m. The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce delta psi m loss and apoptosis, demonstrating that dissipation of delta psi m is a requirement for cell death caused by neisserial infection
    • …
    corecore