2,259 research outputs found

    Approximate theoretical performance evaluation for a diverging rocket

    Get PDF
    A simplified combustion model, which is motivated by available performance studies on the diverging rocket reactor, has been used as basis for an engine performance evaluation. Comparison with conventional rocket configurations shows that an upper performance limit for the diverging reactor is comparable with performance estimates for engines using an adiabatic work cycle. Development of the diverging reactor for engine applications may, however, offer some advantages for very hot, high-energy, propellant systems

    Increasing Complexity Approach to the Fundamental Surface and Interface Chemistry on SOFC Anode Materials

    Get PDF
    In this Account, we demonstrate an increasing complexity approach to gain insight into the principal aspects of the surface and interface chemistry and catalysis of solid oxide fuel cell (SOFC) anode and electrolyte materials based on selected oxide, intermetallic, and metal–oxide systems at different levels of material complexity, as well as into the fundamental microkinetic reaction steps and intermediates at catalytically active surface and interface sites. To dismantle the complexity, we highlight our deconstructing step-by-step approach, which allows one to deduce synergistic properties of complex composite materials from the individual surface catalytic properties of the single constituents, representing the lowest complexity level: pure oxides and pure metallic materials. Upon mixing and doping the latter, directly leading to formation of intermetallic compounds/alloys in the case of metals and oxygen ion conductors/mixed ionic and electronic conductors for oxides, a second complexity level is reached. Finally, the introduction of an (inter)metall(ic)–(mixed) oxide interface leads to the third complexity level. A shell-like model featuring three levels of complexity with the unveiled surface and interface chemistry at its core evolves. As the shift to increased complexity decreases the number of different materials, the interconnections between the studied materials become more convoluted, but the resulting picture of surface chemistry becomes clearer. The materials featured in our investigations are all either already used technologically important or prospective components of SOFCs (such as yttria-stabilized zirconia, perovskites, or Ni–Cu alloys) or their basic constituents (e.g., ZrO2), or they are formed by reactions of other compounds (for instance, pyrochlores are thought to be formed at the YSZ/perovskite phase boundary). We elaborate three representative case studies based on ZrO2, Y2O3, and Y-doped ZrO2 in detail from all three complexity levels. By interconnection of results, we are able to derive common principles of the influence of surface and interface chemistry on the catalytic operation of SOFC anode materials. In situ measurements of the reactivity of water and carbon surface species on ZrO2- and Y2O3-based materials represent levels 1 and 2. The highest degree of complexity at level 3 is exemplified by combined surface science and catalytic studies of metal–oxide systems, oxidatively derived from intermetallic Cu–Zr and Pd–Zr compounds and featuring a large number of phases and interfaces. We show that only by appreciating insight into the basic building blocks of the catalyst materials at lower levels, a full understanding of the catalytic operation of the most complex materials at the highest level is possible

    Critical Behaviour of a Fermionic Random Matrix Model at Large-N

    Full text link
    We study the large-NN limit of adjoint fermion one-matrix models. We find one-cut solutions of the loop equations for the correlators of these models and show that they exhibit third order phase transitions associated with mm-th order multi-critical points with string susceptibility exponents γstr=−1/m\gamma_{\rm str}=-1/m. We also find critical points which can be interpreted as points of first order phase transitions, and we discuss the implications of this critical behaviour for the topological expansion of these matrix models.Comment: 14 pages LaTeX; UBC/S-94/

    Geometric Cone Surfaces and (2+1)- Gravity coupled to Particles

    Get PDF
    We introduce the (2+1)-spacetimes with compact space of genus g and with r gravitating particles which arise by ``Minkowskian suspensions of flat or hyperbolic cone surfaces'', by ``distinguished deformations'' of hyperbolic suspensions and by ``patchworking'' of suspensions. Similarly to the matter-free case, these spacetimes have nice properties with respect to the canonical Cosmological Time Function. When the values of the masses are sufficiently large and the cone points are suitably spaced, the distinguished deformations of hyperbolic suspensions determine a relevant open subset of the full parameter space; this open subset is homeomorphic to the product of an Euclidean space of dimension 6g-6+2r with an open subset of the Teichm\"uller Space of Riemann surfaces of genus g with r punctures. By patchworking of suspensions one can produce examples of spacetimes which are not distinguished deformations of any hyperbolic suspensions, although they have the same masses; in fact, we will guess that they belong to different connected components of the parameter space.Comment: 14 pages Late
    • …
    corecore