551 research outputs found

    Aspects of Neutrino Interactions (Scattering at small Q2Q^2- Region)

    Full text link
    The article begins with a description of chiral symmetry and its application to neutrino induced reactions. For small Q2Q^2 (forward direction) the process is dominated by the amplitute with helicity zero where the pion pole disappears when multiplied with the polarization vector. The remaining part of the amplitude is determined by PCAC. For Eν>2E_\nu > 2 GeV the computed cross sections are in good agreement with data. In coherent pion production we expect equal yields for neutrinos and antineutrinos a relation which for Eν>2E_\nu > 2 GeV is fulfilled. We discuss specific features of the data and suggest methods for improving them by presenting new estimates for the incoherent background.Comment: Presented at the CETUP-Workshop on Neutrino Interactions, July 22-31, 2014 at Lead/Dead Wood, South Dakota, USA. The resubmission contains minor correction

    Analyzing epsilon'/epsilon in the 1/N_c Expansion

    Full text link
    We present a recent analysis of epsilon'/epsilon in the 1/N_c expansion. We show that the 1/N_c corrections to the matrix element of Q_6 are large and positive, indicating a Delta I=1/2 enhancement similar to the one of Q_1 and Q_2 which dominate the CP conserving amplitude. This enhances the CP ratio and can bring the standard model prediction close to the measured value for central values of the parameters.Comment: One reference corrected. 5 pages, talk presented by P.H. Soldan at the 3. International Conference on B Physics and CP Violation, Taipei, Taiwan, December 3 - 7, 1999. Slightly expanded version of the article submitted to the proceeding

    Quark-hadron duality in neutrino scattering

    Get PDF
    We present a phenomenological model of the quark-hadron transition in neutrino-nucleon scattering. Using recently extracted weak nucleon transition form factors, we investigate the extent to which local and global quark-hadron duality is applicable in the neutrino F_1, F_2 and F_3 structure functions, and contrast this with duality in electron scattering. Our findings suggest that duality works relatively well for neutrino-nucleon scattering for the F_2 and F_3 structure functions, but not as well for F_1. We also calculate the quasielastic, resonance and deep inelastic contributions to the Adler sum rule, and find it to be satisfied to within 10% for 0.5 < Q^2 < 2 GeV^2.Comment: 28 pages, 6 figure

    Resonance production by neutrinos: I. J=3/2 Resonances

    Full text link
    The article contains general formulas for the production of J=3/2 resonances by neutrinos and antineutrinos. It specializes to the P_{33}(1232) resonance whose form factors are determined by theory and experiment and then are compared with experimental results at low and high energies. It is shown that the minimum in the low Q^2 region is a consequence of a combined effect from the vanishing of the vector form factors, the muon mass and Pauli blocking. Several improvements for the future investigations are suggested.Comment: 10 pages, LaTeX, misprints corrected, 1 reference adde

    Time-approximation trade-offs for inapproximable problems

    Get PDF
    In this paper we focus on problems which do not admit a constant-factor approximation in polynomial time and explore how quickly their approximability improves as the allowed running time is gradually increased from polynomial to (sub-)exponential. We tackle a number of problems: For Min Independent Dominating Set, Max Induced Path, Forest and Tree, for any r(n), a simple, known scheme gives an approximation ratio of r in time roughly rn/r. We show that, for most values of r, if this running time could be significantly improved the ETH would fail. For Max Minimal Vertex Cover we give a nontrivial √r-approximation in time 2n/r. We match this with a similarly tight result. We also give a log r-approximation for Min ATSP in time 2n/r and an r-approximation for Max Grundy Coloring in time rn/r. Furthermore, we show that Min Set Cover exhibits a curious behavior in this superpolynomial setting: for any δ > 0 it admits an mδ-approximation, where m is the number of sets, in just quasi-polynomial time. We observe that if such ratios could be achieved in polynomial time, the ETH or the Projection Games Conjecture would fail. © Édouard Bonnet, Michael Lampis and Vangelis Th. Paschos; licensed under Creative Commons License CC-BY

    Breaking of B-L in superstring inspired E6 model

    Full text link
    In the framework of the superstring inspired E6 model, low-energy extensions of the standard model compatible with leptogenesis are considered and masses of right-handed neutrinos in two scenarios allowed by long-lived protons are discussed. The presence of two additional generations allows breaking of B-L without generating nonzero vacuum expectation values of right-handed sneutrinos of the three known generations. After the symmetry breaking, right-handed neutrinos acquire Majorana masses of order of 10^11 GeV. Within the framework of a simple discrete symmetry, assumptions made to provide a large mass of right-handed neutrinos are shown to be self-consistent. Supersymmetric structure of the theory ensures that large corrections, associated with the presence of a (super)heavy gauge field, cancel out.Comment: 18 pages, 6 tables, axodraw use

    Nuclear corrections of parton distribution functions

    Full text link
    We report global analysis results of experimental data for nuclear structure-function ratios F_2^A/F_2^{A'} and proton-nucleus Drell-Yan cross-section ratios sigma_{DY}^{pA}/sigma_{DY}^{pA'} in order to determine optimum parton distribution functions (PDFs) in nuclei. An important point of this analysis is to show uncertainties of the distributions by the Hessian method. The results indicate that the uncertainties are large for gluon distributions in the whole x region and for antiquark distributions at x>0.2. We provide a code for calculating any nuclear PDFs at given x and Q^2 for general users. They can be used for calculating high-energy nuclear reactions including neutrino-nucleus interactions, which are discussed at this workshop.Comment: 1+6 pages, LaTeX, 10 eps files, espcrc2.sty, to be published in Nucl. Phys. B Supplements, Proceedings of the Third International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt04), Gran Sasso, Italy, March 17-21, 2004. Nuclear PDF library is available at http://hs.phys.saga-u.ac.jp/nuclp.htm

    Charge Symmetry Violation Corrections to Determination of the Weinberg Angle in Neutrino Reactions

    Get PDF
    We show that the correction to the Paschos-Wolfenstein relation associated with charge symmetry violation in the valence quark distributions is essentially model independent. It is proportional to a ratio of quark momenta that is independent of Q^2. This result provides a natural explanation of the surprisingly good agreement found between our earlier estimates within several different models. When applied to the recent NuTeV measurement, this effect significantly reduces the discrepancy with other determinations of the Weinberg angle.Comment: 7 pages, no figures; expanded discussion of N.ne.Z correction
    corecore