9,652 research outputs found

    Droplet impact on a thin fluid layer

    Get PDF
    The initial stages of high-velocity droplet impact on a shallow water layer are described, with special emphasis given to the spray jet mechanics. Four stages of impact are delineated, with appropriate scalings, and the successively more important influence of the base is analysed. In particular, there is a finite time before which part of the water in the layer remains under the droplet and after which all of the layer is ejected in the splash jet

    Multi-sensor core logging (MSCL) and X-ray computed tomography imaging of borehole core to aid 3D geological modelling of poorly exposed unconsolidated superficial sediments underlying complex industrial sites: an example from Sellafield nuclear site, UK

    Get PDF
    The 3D characterisation of geology underlying complex industrial sites such as nuclear plants is problematic due to the presence of the built infrastructure that restricts or in some cases completely prevents access for geologists to the subsurface environment. Outcrops are rare, geophysics surveys are often impossible (particularly at nuclear plants where activities such as vibroseis are frowned upon due to their effect on the infrastructure itself), and boreholes are often the only way to obtain subsurface data. Yet, with sedimentary deposits in particular, geotechnical logging undertaken to specific standards sometimes misses key information that could have been used to directly inform the creation of geological 3D models. Multi-sensor core logging (MSCL) and X-ray computed tomography (XCT) undertaken on core obtained from a borehole within the Sellafield nuclear plant, is used to illustrate the potential for the techniques to contribute significantly to the creation of 3D subsurface geological models, particularly where access is restricted, such as within nuclear industry locations. Geophysical characteristics are recorded and used to reassess and enhance geotechnical descriptions, leading to the modification of existing unit boundaries or the creation of new ones. A new sedimentary log was created and this was used in a comparison with existing logs and nearby historic exposures, and as the basis for an illustration of industrial site to regional correlation

    Sensor Data Quality and Angular Rate Down-Selection Algorithms on SLS EM-1

    Get PDF
    The NASA Space Launch System Block 1 launch vehicle is equipped with an Inertial Navigation System (INS) and multiple Rate Gyro Assemblies (RGA) that are used in the Guidance, Navigation, and Control (GN&C) algorithms. The INS provides the inertial position, velocity, and attitude of the vehicle along with both angular rate and specific force measurements. Additionally, multiple sets of co-located rate gyros supply angular rate data. The collection of angular rate data, taken along the launch vehicle, is used to separate out vehicle motion from flexible body dynamics. Since the system architecture uses redundant sensors, the capability was developed to evaluate the health (or validity) of the independent measurements. A suite of Sensor Data Quality (SDQ) algorithms is responsible for assessing the angular rate data from the redundant sensors. When failures are detected, SDQ will take the appropriate action and disqualify or remove faulted sensors from forward processing. Additionally, the SDQ algorithms contain logic for down-selecting the angular rate data used by the GNC software from the set of healthy measurements. This paper explores the trades and analyses that were performed in selecting a set of robust fault-detection algorithms included in the GN&C flight software. These trades included both an assessment of hardware-provided health and status data as well as an evaluation of different algorithms based on time-to-detection, type of failures detected, and probability of detecting false positives. We then provide an overview of the algorithms used for both fault-detection and measurement down selection. We next discuss the role of trajectory design, flexible-body models, and vehicle response to off-nominal conditions in setting the detection thresholds. Lastly, we present lessons learned from software integration and hardware-in-the-loop testing

    Towards a class library for mission planning

    Get PDF
    The PASTEL Mission Planning System (MPS) has been developed in C++ using an object-oriented (OO) methodology. While the scope and complexity of this system cannot compare to that of an MPS for a complex mission one of the main considerations of the development was to ensure that we could reuse some of the classes in future MPS. We present here PASTEL MPS classes which could be used in the foundations of a class library for MPS

    Detection of Gravitational Lensing in the Cosmic Microwave Background

    Full text link
    Gravitational lensing of the cosmic microwave background (CMB), a long-standing prediction of the standard cosmolgical model, is ultimately expected to be an important source of cosmological information, but first detection has not been achieved to date. We report a 3.4 sigma detection, by applying quadratic estimator techniques to all sky maps from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite, and correlating the result with radio galaxy counts from the NRAO VLA Sky Survey (NVSS). We present our methodology including a detailed discussion of potential contaminants. Our error estimates include systematic uncertainties from density gradients in NVSS, beam effects in WMAP, Galactic microwave foregrounds, resolved and unresolved CMB point sources, and the thermal Sunyaev-Zeldovich effect.Comment: 27 pages, 20 figure

    Systematically Asymmetric Heliospheric Magnetic Field: Evidence for a Quadrupole Mode and Non-axisymmetry with Polarity Flip-flops

    Full text link
    Recent studies of the heliospheric magnetic field (HMF) have detected interesting, systematic hemispherical and longitudinal asymmetries which have a profound significance for the understanding of solar magnetic fields. The in situ HMF measurements since 1960s show that the heliospheric current sheet (HCS) is systematically shifted (coned) southward during solar minimum times, leading to the concept of a bashful ballerina. While temporary shifts can be considerably larger, the average HCS shift (coning) angle is a few degrees, less than the 7.27.2^{\circ} tilt of the solar rotation axis. Recent solar observations during the last two solar cycles verify these results and show that the magnetic areas in the northern solar hemisphere are larger and their intensity weaker than in the south during long intervals in the late declining to minimum phase. The multipole expansion reveals a strong quadrupole term which is oppositely directed to the dipole term. These results imply that the Sun has a symmetric quadrupole S0 dynamo mode that oscillates in phase with the dominant dipole A0 mode. Moreover, the heliospheric magnetic field has a strong tendency to produce solar tilts that are roughly opposite in longitudinal phase. This implies is a systematic longitudinal asymmetry and leads to a "flip-flop" type behaviour in the dominant HMF sector whose period is about 3.2 years. This agrees very well with the similar flip-flop period found recently in sunspots, as well as with the observed ratio of three between the activity cycle period and the flip-flop period of sun-like stars. Accordingly, these results require that the solar dynamo includes three modes, A0, S0 and a non-axisymmetric mode. Obviously, these results have a great impact on solar modelling.Comment: 13 pages, 4 figures, Solar Physics, Topical Issue of Space Climate Symposium, in pres

    Marine and giant viruses as indicators of a marine microbial community in a riverine system

    Get PDF
    Viral communities are important for ecosystem function as they are involved in critical biogeochemical cycles and controlling host abundance. This study investigates riverine viral communities around a small rural town that influences local water inputs. Myoviridae, Siphoviridae, Phycodnaviridae, Mimiviridae, Herpesviridae, and Podoviridae were the most abundant families. Viral species upstream and downstream of the town were similar, with Synechoccocus phage, salinus, Prochlorococcus phage, Mimivirus A, and Human herpes 6A virus most abundant, contributing to 4.9-38.2% of average abundance within the metagenomic profiles, with Synechococcus and Prochlorococcus present in metagenomes as the expected hosts for the phage. Overall, the majority of abundant viral species were or were most similar to those of marine origin. At over 60 km to the river mouth, the presence of marine communities provides some support for the Baas-Becking hypothesis "everything is everywhere, but, the environment selects." We conclude marine microbial species may occur more frequently in freshwater systems than previously assumed, and hence may play important roles in some freshwater ecosystems within tens to a hundred kilometers from the sea.Lisa M. Dann, Stephanie Rosales, Jody McKerral, James S. Paterson, Renee J. Smith, Thomas C. Jeffries, Rod L. Oliver, James G. Mitchel

    Asymmetries in symmetric quantum walks on two-dimensional networks

    Full text link
    We study numerically the behavior of continuous-time quantum walks over networks which are topologically equivalent to square lattices. On short time scales, when placing the initial excitation at a corner of the network, we observe a fast, directed transport through the network to the opposite corner. This transport is not ballistic in nature, but rather produced by quantum mechanical interference. In the long time limit, certain walks show an asymmetric limiting probability distribution; this feature depends on the starting site and, remarkably, on the precise size of the network. The limiting probability distributions show patterns which are correlated with the initial condition. This might have consequences for the application of continuous time quantum walk algorithms.Comment: 9 pages, 12 figures, revtex

    Human Performance Contributions to Safety in Commercial Aviation

    Get PDF
    In the commercial aviation domain, large volumes of data are collected and analyzed on the failures and errors that result in infrequent incidents and accidents, but in the absence of data on behaviors that contribute to routine successful outcomes, safety management and system design decisions are based on a small sample of non- representative safety data. Analysis of aviation accident data suggests that human error is implicated in up to 80% of accidents, which has been used to justify future visions for aviation in which the roles of human operators are greatly diminished or eliminated in the interest of creating a safer aviation system. However, failure to fully consider the human contributions to successful system performance in civil aviation represents a significant and largely unrecognized risk when making policy decisions about human roles and responsibilities. Opportunities exist to leverage the vast amount of data that has already been collected, or could be easily obtained, to increase our understanding of human contributions to things going right in commercial aviation. The principal focus of this assessment was to identify current gaps and explore methods for identifying human success data generated by the aviation system, from personnel and within the supporting infrastructure
    corecore