210 research outputs found

    Current topics of physiology and pharmacology in the lymphatic system

    Get PDF
    ArticlePharmacology & therapeutics. 2005;105(2):165-188journal articl

    Effects of exercise intensity, posture, pressure on the back and ambient temperature on palmar sweating responses due to handgrip exercises in humans

    Get PDF
    ArticleAutonomic neuroscience: basic & clinical. 2005;118(1-2):125-134journal articl

    Self-trapping of strong electromagnetic beams in relativistic plasmas

    Full text link
    Interaction of an intense electromagnetic (EM) beam with hot relativistic plasma is investigated. It is shown that the thermal pressure brings about a fundamental change in the dynamics - localized, high amplitude, EM field structures, not accessible to a cold (but relativisic) plasma, can now be formed under well- defined conditions. Examples of the trapping of EM beams in self-guiding regimes to form stable 2D solitonic structures in a pure e-p plasma are worked out.Comment: 9 pages, 6 figure

    The surface science of quasicrystals

    Get PDF
    The surfaces of quasicrystals have been extensively studied since about 1990. In this paper we review work on the structure and morphology of clean surfaces, and their electronic and phonon structure. We also describe progress in adsorption and epitaxy studies. The paper is illustrated throughout with examples from the literature. We offer some reflections on the wider impact of this body of work and anticipate areas for future development. (Some figures in this article are in colour only in the electronic version

    Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas

    Get PDF
    Intraductal papillary mucinous neoplasm (IPMN) is a common pancreatic cystic neoplasm that is often invasive and metastatic, resulting in a poor prognosis. Few molecular alterations unique to IPMN are known. We performed whole-exome sequencing for a primary IPMN tissue, which uncovered somatic mutations in KCNF1, DYNC1H1, PGCP, STAB1, PTPRM, PRPF8, RNASE3, SPHKAP, MLXIPL, VPS13C, PRCC, GNAS, KRAS, RBM10, RNF43, DOCK2, and CENPF. We further analyzed GNAS mutations in archival cases of 118 IPMNs and 32 pancreatic ductal adenocarcinomas (PDAs), which revealed that 48 (40.7%) of the 118 IPMNs but none of the 32 PDAs harbored GNAS mutations. G-protein alpha-subunit encoded by GNAS and its downstream targets, phosphorylated substrates of protein kinase A, were evidently expressed in IPMN; the latter was associated with neoplastic grade. These results indicate that GNAS mutations are common and specific for IPMN, and activation of G-protein signaling appears to play a pivotal role in IPMN

    Is there a role for the quantification of RRM1 and ERCC1 expression in pancreatic ductal adenocarcinoma?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RRM1 and ERCC1 overexpression has been extensively investigated as potential predictive markers of tumor sensitivity to conventional chemotherapy agents, most thoroughly in lung cancer. However, data in pancreatic cancer are scarce.</p> <p>Methods</p> <p>We investigated the mRNA and protein expression of ERCC1 and RRM1 by RT-PCR and immunohistochemistry (IHC) in formalin-fixed, paraffin-embedded pancreatic ductal carcinoma (PDA) tissues. The primary outcome investigated was the association between RRM1 and ERCC1 expression and overall survival (OS) or disease-free survival (DFS).</p> <p>Results</p> <p>A total of 94 patients with resected PDA were included in this study. Most of them (87%) received gemcitabine based chemotherapy. Data for OS analysis was available in all cases but only 68% had enough information to estimate DFS. IHC analysis revealed information for 99% (93/94) and 100% of the cases for RRM1 and ERCC1 expression respectively. However, PCR data interpretation was possible in only 49 (52%) and 79 (84%) cases respectively. There was no significant association between high or low expression of either RRM1 or ERCC1, detected by IHC and OS (14.4 vs. 19.9 months; <it>P </it>= 0.5 and 17.1 vs. 19.9; <it>P </it>= 0.83 respectively) or PCR and OS (48.0 vs. 24.1 months; <it>P </it>= 0.21 and 22.0 vs. 16.0 months; <it>P </it>= 0.39 respectively). Similar results were obtained for DFS.</p> <p>Conclusions</p> <p>RRM1 and ERCC1 expression does not seem to have a clear predictive or prognostic value in pancreatic cancer. Our data raise some questions regarding the real clinical and practical significance of analyzing these molecules as predictors of outcomes.</p

    DNA Methylation-Independent Reversion of Gemcitabine Resistance by Hydralazine in Cervical Cancer Cells

    Get PDF
    BACKGROUND: Down regulation of genes coding for nucleoside transporters and drug metabolism responsible for uptake and metabolic activation of the nucleoside gemcitabine is related with acquired tumor resistance against this agent. Hydralazine has been shown to reverse doxorubicin resistance in a model of breast cancer. Here we wanted to investigate whether epigenetic mechanisms are responsible for acquiring resistance to gemcitabine and if hydralazine could restore gemcitabine sensitivity in cervical cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: The cervical cancer cell line CaLo cell line was cultured in the presence of increasing concentrations of gemcitabine. Down-regulation of hENT1 & dCK genes was observed in the resistant cells (CaLoGR) which was not associated with promoter methylation. Treatment with hydralazine reversed gemcitabine resistance and led to hENT1 and dCK gene reactivation in a DNA promoter methylation-independent manner. No changes in HDAC total activity nor in H3 and H4 acetylation at these promoters were observed. ChIP analysis showed H3K9m2 at hENT1 and dCK gene promoters which correlated with hyper-expression of G9A histone methyltransferase at RNA and protein level in the resistant cells. Hydralazine inhibited G9A methyltransferase activity in vitro and depletion of the G9A gene by iRNA restored gemcitabine sensitivity. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that acquired gemcitabine resistance is associated with DNA promoter methylation-independent hENT1 and dCK gene down-regulation and hyper-expression of G9A methyltransferase. Hydralazine reverts gemcitabine resistance in cervical cancer cells via inhibition of G9A histone methyltransferase

    [PSI+] Maintenance Is Dependent on the Composition, Not Primary Sequence, of the Oligopeptide Repeat Domain

    Get PDF
    [PSI+], the prion form of the yeast Sup35 protein, results from the structural conversion of Sup35 from a soluble form into an infectious amyloid form. The infectivity of prions is thought to result from chaperone-dependent fiber cleavage that breaks large prion fibers into smaller, inheritable propagons. Like the mammalian prion protein PrP, Sup35 contains an oligopeptide repeat domain. Deletion analysis indicates that the oligopeptide repeat domain is critical for [PSI+] propagation, while a distinct region of the prion domain is responsible for prion nucleation. The PrP oligopeptide repeat domain can substitute for the Sup35 oligopeptide repeat domain in supporting [PSI+] propagation, suggesting a common role for repeats in supporting prion maintenance. However, randomizing the order of the amino acids in the Sup35 prion domain does not block prion formation or propagation, suggesting that amino acid composition is the primary determinant of Sup35's prion propensity. Thus, it is unclear what role the oligopeptide repeats play in [PSI+] propagation: the repeats could simply act as a non-specific spacer separating the prion nucleation domain from the rest of the protein; the repeats could contain specific compositional elements that promote prion propagation; or the repeats, while not essential for prion propagation, might explain some unique features of [PSI+]. Here, we test these three hypotheses and show that the ability of the Sup35 and PrP repeats to support [PSI+] propagation stems from their amino acid composition, not their primary sequences. Furthermore, we demonstrate that compositional requirements for the repeat domain are distinct from those of the nucleation domain, indicating that prion nucleation and propagation are driven by distinct compositional features
    • …
    corecore