423 research outputs found

    Lande g-tensor in semiconductor nanostructures

    Get PDF
    Understanding the electronic structure of semiconductor nanostructures is not complete without a detailed description of their corresponding spin-related properties. Here we explore the response of the shell structure of InAs self-assembled quantum dots to magnetic fields oriented in several directions, allowing the mapping of the g-tensor modulus for the s and p shells. We found that the g-tensors for the s and p shells show a very different behavior. The s-state in being more localized allows the probing of the confining potential details by sweeping the magnetic field orientation from the growth direction towards the in-plane direction. As for the p-state, we found that the g-tensor modulus is closer to that of the surrounding GaAs, consistent with a larger delocalization. These results reveal further details of the confining potentials of self-assembled quantum dots that have not yet been probed, in addition to the assessment of the g-tensor, which is of fundamental importance for the implementation of spin related applications.Comment: 4 pages, 4 figure

    Catalytic difunctionalization of unactivated alkenes with unreactive hexamethyldisilane through regeneration of silylium ions

    Get PDF
    A metal‐free, intermolecular syn‐addition of hexamethyldisilane across simple alkenes is reported. The catalytic cycle is initiated and propagated by the transfer of a methyl group from the disilane to a silylium‐ion‐like intermediate, corresponding to the (re)generation of the silylium‐ion catalyst. The key feature of the reaction sequence is the cleavage of the Si−Si bond in a 1,3‐silyl shift from silicon to carbon. A central intermediate of the catalysis was structurally characterized by X‐ray diffraction, and the computed reaction mechanism is fully consistent with the experimental findings.TU Berlin, Open-Access-Mittel - 201

    Catalytic dehydrogenative Si-N coupling of pyrroles, indoles, carbazoles as well as anilines with hydrosilanes without added base

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.A base-free, catalytic protocol for the dehydrogenative Si–N coupling of weakly nucleophilic N–H groups of heteroarenes or aryl-substituted amines with equimolar amounts of hydrosilanes is reported. Cooperative Si–H bond activation at a Ru–S bond generates a silicon electrophile that forms a Si–N bond prior to the N–H deprotonation by an intermediate Ru–H complex, only releasing H2.DFG, GRK 1143, Komplexe chemische Systeme: Design, Entwicklung und Anwendunge

    Electron g-Factor Anisotropy in Symmetric (110)-oriented GaAs Quantum Wells

    Get PDF
    We demonstrate by spin quantum beat spectroscopy that in undoped symmetric (110)-oriented GaAs/AlGaAs single quantum wells even a symmetric spatial envelope wavefunction gives rise to an asymmetric in-plane electron Land\'e-g-factor. The anisotropy is neither a direct consequence of the asymmetric in-plane Dresselhaus splitting nor of the asymmetric Zeeman splitting of the hole bands but is a pure higher order effect that exists as well for diamond type lattices. The measurements for various well widths are very well described within 14 x 14 band k.p theory and illustrate that the electron spin is an excellent meter variable to map out the internal -otherwise hidden- symmetries in two dimensional systems. Fourth order perturbation theory yields an analytical expression for the strength of the g-factor anisotropy, providing a qualitative understanding of the observed effects

    Modelling of Optical Detection of Spin-Polarized Carrier Injection into Light-Emitting Devices

    Get PDF
    We investigate the emission of multimodal polarized light from Light Emitting Devices due to spin-aligned carriers injection. The results are derived through operator Langevin equations, which include thermal and carrier-injection fluctuations, as well as non-radiative recombination and electronic g-factor temperature dependence. We study the dynamics of the optoelectronic processes and show how the temperature-dependent g-factor and magnetic field affect the polarization degree of the emitted light. In addition, at high temperatures, thermal fluctuation reduces the efficiency of the optoelectronic detection method for measuring spin-polarization degree of carrier injection into non-magnetic semicondutors.Comment: 15 pages, 7 figures, replaced by revised version. To appear in Phys. Rev.

    Highly anisotropic g-factor of two-dimensional hole systems

    Full text link
    Coupling the spin degree of freedom to the anisotropic orbital motion of two-dimensional (2D) hole systems gives rise to a highly anisotropic Zeeman splitting with respect to different orientations of an in-plane magnetic field B relative to the crystal axes. This mechanism has no analogue in the bulk band structure. We obtain good, qualitative agreement between theory and experimental data, taken in GaAs 2D hole systems grown on (113) substrates, showing the anisotropic depopulation of the upper spin subband as a function of in-plane B.Comment: 4 pages, 3 figure

    Mesoscopic spin confinement during acoustically induced transport

    Full text link
    Long coherence lifetimes of electron spins transported using moving potential dots are shown to result from the mesoscopic confinement of the spin vector. The confinement dimensions required for spin control are governed by the characteristic spin-orbit length of the electron spins, which must be larger than the dimensions of the dot potential. We show that the coherence lifetime of the electron spins is independent of the local carrier densities within each potential dot and that the precession frequency, which is determined by the Dresselhaus contribution to the spin-orbit coupling, can be modified by varying the sample dimensions resulting in predictable changes in the spin-orbit length and, consequently, in the spin coherence lifetime.Comment: 10 pages, 2 figure

    Semiclassical theory of spin-orbit interactions using spin coherent states

    Get PDF
    We formulate a semiclassical theory for systems with spin-orbit interactions. Using spin coherent states, we start from the path integral in an extended phase space, formulate the classical dynamics of the coupled orbital and spin degrees of freedom, and calculate the ingredients of Gutzwiller's trace formula for the density of states. For a two-dimensional quantum dot with a spin-orbit interaction of Rashba type, we obtain satisfactory agreement with fully quantum-mechanical calculations. The mode-conversion problem, which arose in an earlier semiclassical approach, has hereby been overcome.Comment: LaTeX (RevTeX), 4 pages, 2 figures, accepted for Physical Review Letters; final version (v2) for publication with minor editorial change

    Rashba precession in quantum wires with interaction

    Get PDF
    Rashba precession of spins moving along a one-dimensional quantum channel is calculated, accounting for Coulomb interactions. The Tomonaga--Luttinger model is formulated in the presence of spin-orbit scattering and solved by Bosonization. Increasing interaction strength at decreasing carrier density is found to {\sl enhance} spin precession and the nominal Rashba parameter due to the decreasing spin velocity compared with the Fermi velocity. This result can elucidate the observed pronounced changes of the spin splitting on applied gate voltages which are estimated to influence the interface electric field in heterostructures only little.Comment: now replaced by published versio

    Spin-drift transport and its applications

    Full text link
    We study the generation of non-equilibrium spin currents in systems with spatially-inhomogeneous magnetic potentials. For sufficiently high current densities, the spin polarization can be transported over distances significantly exceeding the intrinsic spin-diffusion length. This enables applications that are impossible within the conventional spin-diffusion regime. Specifically, we propose dc measurement schemes for the carrier spin relaxation times, T1T_1 and T2T_2, as well as demonstrate the possibility of spin species separation by driving current through a region with an inhomogeneous magnetic potential.Comment: 4 pages, 2 eps figure
    • 

    corecore