7 research outputs found

    Interactions between SIRT1 and AP-1 reveal a mechanistic insight into the growth promoting properties of alumina (Al2O3) nanoparticles in mouse skin epithelial cells

    No full text
    The physicochemical properties of nanomaterials differ from those of the bulk material of the same composition. However, little is known about the underlying effects of these particles in carcinogenesis. The purpose of this study was to determine the mechanisms involved in the carcinogenic properties of nanoparticles using aluminum oxide (Al(2)O(3)/alumina) nanoparticles as the prototype. Well-established mouse epithelial JB6 cells, sensitive to neoplastic transformation, were used as the experimental model. We demonstrate that alumina was internalized and maintained its physicochemical composition inside the cells. Alumina increased cell proliferation (53%), proliferating cell nuclear antigen (PCNA) levels, cell viability and growth in soft agar. The level of manganese superoxide dismutase, a key mitochondrial antioxidant enzyme, was elevated, suggesting a redox signaling event. In addition, the levels of reactive oxygen species and the activities of the redox sensitive transcription factor activator protein-1 (AP-1) and a longevity-related protein, sirtuin 1 (SIRT1), were increased. SIRT1 knockdown reduces DNA synthesis, cell viability, PCNA levels, AP-1 transcriptional activity and protein levels of its targets, JunD, c-Jun and BcL-xl, more than controls do. Immunoprecipitation studies revealed that SIRT1 interacts with the AP-1 components c-Jun and JunD but not with c-Fos. The results identify SIRT1 as an AP-1 modulator and suggest a novel mechanism by which alumina nanoparticles may function as a potential carcinogen

    Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses

    No full text
    Atrazine is the most commonly used herbicide in the U.S. and probably the world. It can be present at several parts per million in agricultural runoff and can reach 40 parts per billion (ppb) in precipitation. We examined the effects of atrazine on sexual development in African clawed frogs (Xenopus laevis). Larvae were exposed to atrazine (0.01–200 ppb) by immersion throughout larval development, and we examined gonadal histology and laryngeal size at metamorphosis. Atrazine (≥0.1 ppb) induced hermaphroditism and demasculinized the larynges of exposed males (≥1.0 ppb). In addition, we examined plasma testosterone levels in sexually mature males. Male X. laevis suffered a 10-fold decrease in testosterone levels when exposed to 25 ppb atrazine. We hypothesize that atrazine induces aromatase and promotes the conversion of testosterone to estrogen. This disruption in steroidogenesis likely explains the demasculinization of the male larynx and the production of hermaphrodites. The effective levels reported in the current study are realistic exposures that suggest that other amphibian species exposed to atrazine in the wild could be at risk of impaired sexual development. This widespread compound and other environmental endocrine disruptors may be a factor in global amphibian declines

    Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis

    No full text
    Multiwalled carbon nanotubes (MWCNTs) have the potential for widespread applications in engineering and materials science. However, because of their needle-like shape and high durability, concerns have been raised that MWCNTs may induce asbestos-like pathogenicity. Although recent studies have demonstrated that MWCNTs induce various types of reactivities, the physicochemical features of MWCNTs that determine their cytotoxicity and carcinogenicity in mesothelial cells remain unclear. Here, we showed that the deleterious effects of nonfunctionalized MWCNTs on human mesothelial cells were associated with their diameter-dependent piercing of the cell membrane. Thin MWCNTs (diameter ∼ 50 nm) with high crystallinity showed mesothelial cell membrane piercing and cytotoxicity in vitro and subsequent inflammogenicity and mesotheliomagenicity in vivo. In contrast, thick (diameter ∼ 150 nm) or tangled (diameter ∼ 2–20 nm) MWCNTs were less toxic, inflammogenic, and carcinogenic. Thin and thick MWCNTs similarly affected macrophages. Mesotheliomas induced by MWCNTs shared homozygous deletion of Cdkn2a/2b tumor suppressor genes, similar to mesotheliomas induced by asbestos. Thus, we propose that different degrees of direct mesothelial injury by thin and thick MWCNTs are responsible for the extent of inflammogenicity and carcinogenicity. This work suggests that control of the diameter of MWCNTs could reduce the potential hazard to human health
    corecore