134 research outputs found

    Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.

    Get PDF
    Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD

    The birth of a human-specific neural gene by incomplete duplication and gene fusion

    Get PDF
    Background: Gene innovation by duplication is a fundamental evolutionary process but is difficult to study in humans due to the large size, high sequence identity, and mosaic nature of segmental duplication blocks. The human-specific gene hydrocephalus-inducing 2, HYDIN2, was generated by a 364 kbp duplication of 79 internal exons of the large ciliary gene HYDIN from chromosome 16q22.2 to chromosome 1q21.1. Because the HYDIN2 locus lacks the ancestral promoter and seven terminal exons of the progenitor gene, we sought to characterize transcription at this locus by coupling reverse transcription polymerase chain reaction and long-read sequencing. Results: 5' RACE indicates a transcription start site for HYDIN2 outside of the duplication and we observe fusion transcripts spanning both the 5' and 3' breakpoints. We observe extensive splicing diversity leading to the formation of altered open reading frames (ORFs) that appear to be under relaxed selection. We show that HYDIN2 adopted a new promoter that drives an altered pattern of expression, with highest levels in neural tissues. We estimate that the HYDIN duplication occurred ~3.2 million years ago and find that it is nearly fixed (99.9%) for diploid copy number in contemporary humans. Examination of 73 chromosome 1q21 rearrangement patients reveals that HYDIN2 is deleted or duplicated in most cases. Conclusions: Together, these data support a model of rapid gene innovation by fusion of incomplete segmental duplications, altered tissue expression, and potential subfunctionalization or neofunctionalization of HYDIN2 early in the evolution of the Homo lineage

    Conserving Coastal Wetlands Despite Sea Level Rise

    Get PDF
    Coastal wetlands provide valuable services such as flood protection and fisheries production to a global population that is increasingly concentrated near the coast and dependent on its resources. Many of the world\u27s coastal wetlands suffered significant losses during this century, and the creation of new wetland areas is not keeping pace with recent losses. Some destruction of wetland areas can be expected as a consequence of the continual reworking of the coastal zone by dynamic geologic processes. Yet human activities also play a role, both directly by encroaching on coastal wetlands and indirectly by influencing the hydrologic and geologic processes in the coastal zone

    Airway smooth muscle as a target of asthma therapy: history and new directions

    Get PDF
    Ultimately, asthma is a disease characterized by constriction of airway smooth muscle (ASM). The earliest approach to the treatment of asthma comprised the use of xanthines and anti-cholinergics with the later introduction of anti-histamines and anti-leukotrienes. Agents directed at ion channels on the smooth muscle membrane (Ca(2+ )channel blockers, K(+ )channel openers) have been tried and found to be ineffective. Functional antagonists, which modulate intracellular signalling pathways within the smooth muscle (β-agonists and phosphodiesterase inhibitors), have been used for decades with success, but are not universally effective and patients continue to suffer with exacerbations of asthma using these drugs. During the past several decades, research energies have been directed into developing therapies to treat airway inflammation, but there have been no substantial advances in asthma therapies targeting the ASM. In this manuscript, excitation-contraction coupling in ASM is addressed, highlighting the current treatment of asthma while proposing several new directions that may prove helpful in the management of this disease
    • …
    corecore