7,161 research outputs found

    Complexified sigma model and duality

    Full text link
    We show that the equations of motion associated with a complexified sigma-model action do not admit manifest dual SO(n,n) symmetry. In the process we discover new type of numbers which we called `complexoids' in order to emphasize their close relation with both complex numbers and matroids. It turns out that the complexoids allow to consider the analogue of the complexified sigma-model action but with (1+1)-worldsheet metric, instead of Euclidean-worldsheet metric. Our observations can be useful for further developments of complexified quantum mechanics.Comment: 15 pages, Latex, improved versio

    Linearized gravity as a gauge theory

    Full text link
    We discuss linearized gravity from the point of view of a gauge theory. In (3+1)-dimensions our analysis allows to consider linearized gravity in the context of the MacDowell-Mansouri formalism. Our observations may be of particular interest in the strong-weak coupling duality for linearized gravity, in Randall-Sundrum brane world scenario and in Ashtekar formalism.Comment: Latex, 13 page

    The inverse-square law and quantum gravity

    Get PDF
    A program is described which measures the gravitational acceleration of antiprotons. This idea was approached from a particle physics point of view. That point of view is examined starting with some history of physics over the last 200 years

    Derivation of a multilayer approach to model suspended sediment transport: application to hyperpycnal and hypopycnal plumes

    Full text link
    We propose a multi-layer approach to simulate hyperpycnal and hypopycnal plumes in flows with free surface. The model allows to compute the vertical profile of the horizontal and the vertical components of the velocity of the fluid flow. The model can describe as well the vertical profile of the sediment concentration and the velocity components of each one of the sediment species that form the turbidity current. To do so, it takes into account the settling velocity of the particles and their interaction with the fluid. This allows to better describe the phenomena than a single layer approach. It is in better agreement with the physics of the problem and gives promising results. The numerical simulation is carried out by rewriting the multi-layer approach in a compact formulation, which corresponds to a system with non-conservative products, and using path-conservative numerical scheme. Numerical results are presented in order to show the potential of the model

    s-wave scattering and the zero-range limit of the finite square well in arbitrary dimensions

    Full text link
    We examine the zero-range limit of the finite square well in arbitrary dimensions through a systematic analysis of the reduced, s-wave two-body time-independent Schr\"odinger equation. A natural consequence of our investigation is the requirement of a delta-function multiplied by a regularization operator to model the zero-range limit of the finite-square well when the dimensionality is greater than one. The case of two dimensions turns out to be surprisingly subtle, and needs to be treated separately from all other dimensions
    corecore