87 research outputs found

    Enhanced Electron-Phonon Coupling and its Irrelevance to High Tc_{c} Superconductivity

    Full text link
    It is argued that the origin of the buckling of the CuO2_{2} planes in certain cuprates as well as the strong electron-phonon coupling of the B1gB_{1g} phonon is due to the electric field across the planes induced by atoms with different valence above and below. The magnitude of the electric field is deduced from new Raman results on YBa2_{2}Cu3_{3}O6+x_{6+x} and Bi2_{2}Sr2_{2}(Ca1−x_{1-x}Yx_{x})Cu2_{2}O8_{8} with different O and Y doping, respectively. In the latter case it is shown that the symmetry breaking by replacing Ca partially by Y enhances the coupling by an order of magnitude, while the superconducting TcT_c drops to about two third of its original value.Comment: 4 pages, 2 figures. This and other papers can be downloaded from http://gwis2.circ.gwu.edu/~tp

    Superconducting gap of overdoped Tl2Ba2CuO6+d observed by Raman scattering

    Full text link
    We report Raman scattering spectra for single crystals of overdoped Tl2Ba2CuO6+d (Tl-2201) at low temperatures. It was observed that the pair-breaking peaks in A1g and B1g spectra radically shift to lower energy with carrier doping. We interpret it as s-wave component mixing into d-wave, although the crystal structure is tetragonal. Since similar phenomena were observed also in YBa2Cu3Oy and Bi2Sr2CaCu2Oz, we conclude that s-wave mixing is a common property for overdoped high-Tc superconductors.Comment: 8 pages, 3 figures, proceedings of SNS200

    A Consistent Picture of Electronic Raman Scattering and Infrared Conductivity in the Cuprates

    Full text link
    Calculations are presented for electronic Raman scattering and infrared conductivity in a dx2−y2d_{x^{2}-y^{2}} superconductor including the effects of elastic scattering via anisotropic impurities and inelastic spin-fluctuation scattering. A consistent description of experiments on optimally doped Bi-2212 is made possible by considering the effects of correlations on both inelastic and elastic scattering.Comment: 4 pages Revtex, 5 embedded eps file

    Raman study of carrier-overdoping effects on the gap in high-Tc superconducting cuprates

    Full text link
    Raman scattering in the heavily overdoped (Y,Ca)Ba_2Cu_3O_{7-d} (T_c = 65 K) and Bi_2Sr_2CaCu_2O_{8+d} (T_c = 55 K) crystals has been investigated. For the both crystals, the electronic pair-breaking peaks in the A_{1g} and B_{1g} polarizations were largely shifted to the low energies close to a half of 2Delta_0, Delta_0 being the maximum gap. It strongly suggests s-wave mixing into the d-wave superconducting order parameter and the consequent manifestation of the Coulomb screening effect in the B_{1g}-channel. Gradual mixing of s-wave component with overdoping is not due to the change of crystal structure symmetry but a generic feature in all high-T_c superconducting cuprates.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B, Rapid communicaito

    Anomalous Self-Energy Effects of the B_1g Phonon in Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 Films

    Full text link
    In Raman spectra of cuprate superconductors the gap shows up both directly, via a redistribution of the electronic background, the so-called "2Delta peaks", and indirectly, e.g. via the renormalization of phononic excitations. We use a model that allows us to study the redistribution and the related phonon self-energy effects simultaneously. We apply this model to the B_1g phonon of Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 films, where Pr or Ca substitution enables us to investigate under- and overdoped samples. While various self-energy effects can be explained by the strength and energy of the 2\Delta peaks, anomalies remain. We discuss possible origins of these anomalies.Comment: 6 pages including 4 figure

    Electronic Raman Scattering in Nearly Antiferromagnetic Fermi Liquids

    Get PDF
    A theory of electronic Raman scattering in nearly antiferromagnetic Fermi liquids is constructed using the phenomenological electron-electron interaction introduced by Millis, Monien, and Pines. The role of "hot spots" and their resulting signatures in the channel dependent Raman spectra is highlighted, and different scaling regimes are addressed. The theory is compared to Raman spectra taken in the normal state of overdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta}, and it is shown that many features of the symmetry dependent spectra can be explained by the theory.Comment: 3 pages + 4 figures, SNS97 Conference Proceeding

    Carrier relaxation, pseudogap, and superconducting gap in high-Tc cuprates: A Raman scattering study

    Full text link
    We describe results of electronic Raman-scattering experiments in differently doped single crystals of Y-123 and Bi-2212. The comparison of AF insulating and metallic samples suggests that at least the low-energy part of the spectra originates predominantly from excitations of free carriers. We therefore propose an analysis of the data in terms of a memory function approach. Dynamical scattering rates and mass-enhancement factors for the carriers are obtained. In B2g symmetry the Raman data compare well to the results obtained from ordinary and optical transport. For underdoped materials the dc scattering rates in B1g symmetry become temperature independent and considerably larger than in B2g symmetry. This increasing anisotropy is accompanied by a loss of spectral weight in B2g symmetry in the range between the superconducting transition at Tc and a characteristic temperature T* of order room temperature which compares well with the pseudogap temperature found in other experiments. The energy range affected by the pseudogap is doping and temperature independent. The integrated spectral loss is approximately 25% in underdoped samples and becomes much weaker towards higher carrier concentration. In underdoped samples, superconductivity related features in the spectra can be observed only in B2g symmetry. The peak frequencies scale with Tc. We do not find a direct relation between the pseudogap and the superconducting gap.Comment: RevTeX, 21 pages, 24 gif figures. For PostScript with embedded eps figures, see http://www.wmi.badw-muenchen.de/~opel/k2.htm

    The effect of phase fluctuations on the single-particle properties of the underdoped cuprates

    Full text link
    We study the effect of order parameter phase fluctuations on the single-particle properties of fermions in the underdoped cuprate superconductors using a phenomenological low-energy theory. We identify the fermion-phase field coupling as the Doppler-shift of the quasiparticle spectrum induced by the fluctuating superfluid velocity and we calculate the effect of these fluctuations on the fermion self-energy. We show that the vortex pair unbinding near the superconducting transition causes a significant broadening in the fermion spectral function, producing a pseudogap-like feature. We also discuss the specific heat and show that the phase fluctuation effect is visible due to the short coherence length.Comment: RevTex 11 pages; 11 epsf figures included. Added and updated reference

    Nonmonotonic d_{x^2-y^2} Superconducting Order Parameter in Nd_{2-x}Ce_xCuO_4

    Full text link
    Low energy polarized electronic Raman scattering of the electron doped superconductor Nd_1.85Ce_0.15CuO_4 (T_c=22 K) has revealed a nonmonotonic d_{x^2-y^2} superconducting order parameter. It has a maximum gap of 4.4 k_BT_c at Fermi surface intersections with antiferromagnetic Brillouin zone (the ``hot spots'') and a smaller gap of 3.3 k_BT_c at fermionic Brillouin zone boundaries. The gap enhancement in the vicinity of the ``hot spots'' emphasizes role of antiferromagnetic fluctuations and similarity in the origin of superconductivity for electron- and hole-doped cuprates.Comment: 4 pages, 4 figure

    Physical origin of the buckling in CuO2_2: Electron-phonon coupling and Raman spectra

    Full text link
    It is shown theoretically that the buckling of the CuO2_{2} planes in certain cuprate systems can be explained in terms of an electric field across the planes which originates from different valences of atoms above and below the plane. This field results also in a strong coupling of the Raman-active out-of-phase vibration of the oxygen atoms (B1gB_{1g} mode) to the electronic charge transfer between the two oxygens in the CuO2_{2} plane. Consequently, the electric field can be deduced from the Fano-type line shape of the B1gB_{1g} phonon. Using the electric field estimated from the electron-phonon coupling the amplitude of the buckling is calculated and found to be in good agreement with the structural data. Direct experimental support for the idea proposed is obtained in studies of YBa2_{2}Cu3_{3}O6+x_{6+x} and Bi2_{2}Sr2_{2}(Ca1−x_{1-x}Yx_{x})Cu2_{2}O8_{8} with different oxygen and yttrium doping, respectively, including antiferromagnetic samples. In the latter compound, symmetry breaking by replacing Ca partially by Y leads to an enhancement of the electron-phonon coupling by an order of magnitude.Comment: 12 pages, 4 figures, and 1 tabl
    • …
    corecore