107 research outputs found

    Evaluation of osseointegration of titanium alloyed implants modified by plasma polymerization

    Get PDF
    By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V) coated with plasma-polymerized allylamine (PPAAm) and plasma-polymerized ethylenediamine (PPEDA) versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC) was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%). Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5%) and implants with PPEDA a significantly increased BIC (63.7%). In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    Paroxysmal nocturnal hemoglobinuria (PNH): higher sensitivity and validity in diagnosis and serial monitoring by flow cytometric analysis of reticulocytes

    Get PDF
    Flow cytometric analysis of GPI-anchored proteins (GPI-AP) is the gold standard for diagnosis of paroxysmal nocturnal hemoglobinuria (PNH). Due to therapy options and the relevance of GPI-deficient clones for prognosis in aplastic anaemia detection of PNH is gaining importance. However, no generally accepted standard has been established. This study analysed the usefulness of a flow cytometric panel with CD58, CD59 on reticulocytes and erythrocytes, CD24/CD66b and CD16, FLAER on granulocytes and CD14, and CD48 on monocytes. Actual cut-off (mean + 2 SD) for GPI-deficient cells was established in healthy blood donors. We studied 1,296 flow cytometric results of 803 patients. Serial monitoring was analysed during a median follow-up of 1,039 days in 155 patients. Of all, 22% and 48% of 155 follow-up patients. showed significant GPI-AP-deficiency at time of initial analyses. During follow-up in 9%, a new PNH diagnosis, and in 28%, a significant change of size or lineage involvement was demonstrated. Highly significant correlations for GPI-AP deficiency were found within one cell lineage (r2 = 0.61–0.95, p < 0.0001) and between the different cell lineages (r2 = 0.49–0.88, p < 0.0001). Especially for detection of small GPI-deficient populations, reticulocytes and monocytes proved to be sensitive diagnostic tools. Our data showed superiority of reticulocyte analyses compared with erythrocyte analyses due to transfusion and hemolysis independency especially in cases with small GPI-deficient populations. In conclusion, a screening panel of at least two different GPI-AP markers on granulocytes, erythrocytes, and reticulocytes provides a simple and rapid method to detect even small GPI-deficient populations. Among the markers in our panel, CD58 and CD59 on reticulocytes, CD24/66b, and eventually FLAER on granulocytes as well as CD14 on monocytes were most effective for flow cytometric diagnosis of GPI deficiency

    Flow cytometry as a rapid analytical tool to determine physiological responses to changing O2 and iron concentration by Magnetospirillum gryphiswaldense strain MSR-1

    Get PDF
    Magnetotactic bacteria (MTB) are a diverse group of bacteria that synthesise magnetosomes, magnetic membrane-bound nanoparticles that have a variety of diagnostic, clinical and biotechnological applications. We present the development of rapid methods using flow cytometry to characterize several aspects of the physiology of the commonly-used MTB Magnetospirillum gryphiswaldense MSR-1. Flow cytometry is an optical technique that rapidly measures characteristics of individual bacteria within a culture, thereby allowing determination of population heterogeneity and also permitting direct analysis of bacteria. Scatter measurements were used to measure and compare bacterial size, shape and morphology. Membrane permeability and polarization were measured using the dyes propidium iodide and bis-(1,3-dibutylbarbituric acid) trimethine oxonol to determine the viability and ‘health’ of bacteria. Dyes were also used to determine changes in concentration of intracellular free iron and polyhydroxylakanoate (PHA), a bacterial energy storage polymer. These tools were then used to characterize the responses of MTB to different O2 concentrations and iron-sufficient or iron-limited growth. Rapid analysis of MTB physiology will allow development of bioprocesses for the production of magnetosomes, and will increase understanding of this fascinating and useful group of bacteria

    A meta-analysis of genome-wide association studies identifies multiple longevity genes

    Get PDF
    Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) epsilon 4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE epsilon 2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity
    corecore