29,148 research outputs found

    Iron and molybdenum valences in double-perovskite (Sr,Nd)2FeMoO6: electron-doping effect

    Full text link
    Double perovskite, (Sr1-xNdx)2FeMoO6, was doped with electrons through partial substitution of divalent Sr by trivalent Nd (0 < x < 0.2). The Fe valence and the degree of B-site order were probed by 57Fe Mossbauer spectroscopy. Replacing Sr by Nd increased the fraction of Fe and Mo atoms occupying wrong sites, i.e. antisite disorder. It had very little effect on the Fe valence: a small but visible increase in the isomer shift was seen for the mixed-valent FeII/III atoms occupying the right site indicating a slight movement towards divalency of these atoms, which was more than counterbalanced by the increase in the fraction of antisite Fe atoms with III valence state. It is therefore argued that the bulk of the electron doping is received by antisite Mo atoms, which - being surrounded by six MoV/VI atoms - prefer the lower IV/V valence state. Thus under Nd substitution, the charge-neutrality requirement inflicts a lattice disorder such that low-valent MoIV/V can exist.Comment: 15 pages, 6 figures, to appear in Solid State Commu

    Coherence of the posterior predictive p-value based on the posterior odds.

    Get PDF
    ^aIt is well-known that classical p-values sometimes behave incoherently for testing hypotheses in the sense that, when Θ0⊂Θ0â€Č\Theta_{0} \subset \Theta_{0}{'}, the support given to Θ0\Theta_{0} is greater than or equal to the support given to Θ0â€Č\Theta_{0}^{'} . This problem is also found for posterior predictive p-values (a Bayesian-motivated alternative to classical p-values). In this paper, it is proved that, under some conditions, the posterior predictive p-value based on the posterior odds is coherent, showing that the choice of a suitable discrepancy variable is crucial

    Symmetries in two-dimensional dilaton gravity with matter

    Get PDF
    The symmetries of generic 2D dilaton models of gravity with (and without) matter are studied in some detail. It is shown that ÎŽ2\delta_2, one of the symmetries of the matterless models, can be generalized to the case where matter fields of any kind are present. The general (classical) solution for some of these models, in particular those coupled to chiral matter, which generalizes the Vaidya solution of Einstein Gravity, is also given.Comment: Minor changes have been made; the references have been updated and some added; 11 pages. To appear in Phys. Rev.

    Unconventional cosmology on the (thick) brane

    Full text link
    We consider the cosmology of a thick codimension 1 brane. We obtain the matching conditions leading to the cosmological evolution equations and show that when one includes matter with a pressure component along the extra dimension in the brane energy-momentum tensor, the cosmology is of non-standard type. In particular one can get acceleration when a dust of non-relativistic matter particles is the only source for the (modified) Friedman equation. Our equations would seem to violate the conservation of energy-momentum from a 4D perspective, but in 5D the energy-momentum is conserved. One could write down an effective conserved 4D energy-momentum tensor attaching a ``dark energy'' component to the energy-momentum tensor of matter that has pressure along the extra dimension. This extra component could, on a cosmological scale, be interpreted as matter-coupled quintessence. We comment on the effective 4D description of this effect in terms of the time evolution of a scalar field (the 5D radion) coupled to this kind of matter.Comment: 9 pages, v2. eq.(17) corrected, comments on effective theory change

    Supermassive Black Holes and Galaxy Formation

    Get PDF
    The formation of supermassive black holes (SMBH) is intimately related to galaxy formation, although precisely how remains a mystery. I speculate that formation of, and feedback from, SMBH may alleviate problems that have arisen in our understanding of the cores of dark halos of galaxies.Comment: Talk at conference on Matter in the Universe, March 2001, ISSI Ber

    Document Retrieval on Repetitive Collections

    Full text link
    Document retrieval aims at finding the most important documents where a pattern appears in a collection of strings. Traditional pattern-matching techniques yield brute-force document retrieval solutions, which has motivated the research on tailored indexes that offer near-optimal performance. However, an experimental study establishing which alternatives are actually better than brute force, and which perform best depending on the collection characteristics, has not been carried out. In this paper we address this shortcoming by exploring the relationship between the nature of the underlying collection and the performance of current methods. Via extensive experiments we show that established solutions are often beaten in practice by brute-force alternatives. We also design new methods that offer superior time/space trade-offs, particularly on repetitive collections.Comment: Accepted to ESA 2014. Implementation and experiments at http://www.cs.helsinki.fi/group/suds/rlcsa

    Self-similar collapse and the structure of dark matter halos: A fluid approach

    Full text link
    We explore the dynamical restrictions on the structure of dark matter halos through a study of cosmological self-similar gravitational collapse solutions. A fluid approach to the collisionless dynamics of dark matter is developed and the resulting closed set of moment equations are solved numerically including the effect of halo velocity dispersions (both radial and tangential), for a range of spherically averaged initial density profiles. Our results highlight the importance of tangential velocity dispersions to obtain density profiles shallower than 1/r21/r^2 in the core regions, and for retaining a memory of the initial density profile, in self-similar collapse. For an isotropic core velocity dispersion only a partial memory of the initial density profile is retained. If tangential velocity dispersions in the core are constrained to be less than the radial dispersion, a cuspy core density profile shallower than 1/r1/r cannot obtain, in self-similar collapse.Comment: 25 pages, 7 figures, submitted to Ap

    On the origin of the Tully-Fisher relation

    Get PDF
    We discuss the origin of the Tully-Fisher (TF) relation using the NN-body/SPH method, which includes cooling, star formation and stellar feedback of energy, mass and metals. We consider initially rotating overdense spheres, and trace formation processes of disk galaxies from z=25z=25 to z=0z=0 in the Cold Dark Matter (CDM) cosmology. To clarify the origin of the TF relation, we simulate formation of 14 galaxies with different masses and spin parameters, and compute observable values, such as the total magnitude and the line-width. We find that the simulated galaxies reproduce the slope and scatter of the TF relation: the slope is originated in the difference of total galactic masses, and the scatter is produced by the difference of initial spin parameters. As well as the TF relation, observed features of spiral galaxies, such as the exponential light-profile and the flat rotation curve, are reproduced in our simulations, which were assumed {\it a priori} in past semi-analytical approaches.Comment: 11 pages, including 6 figures, submitted to Ap

    Free energy cascade in gyrokinetic turbulence

    Full text link
    In gyrokinetic theory, the quadratic nonlinearity is known to play an important role in the dynamics by redistributing (in a conservative fashion) the free energy between the various active scales. In the present study, the free energy transfer is analyzed for the case of ion temperature gradient driven turbulence. It is shown that it shares many properties with the energy transfer in fluid turbulence. In particular, one finds a forward (from large to small scales), extremely local, and self-similar cascade of free energy in the plane perpendicular to the background magnetic field. These findings shed light on some fundamental properties of plasma turbulence, and encourage the development of large eddy simulation techniques for gyrokinetics.Comment: 4 pages, 2 Postscript figure
    • 

    corecore