9 research outputs found

    IL-1 and iNOS gene expression and NO synthesis in the superior region of meniscal explants are dependent on the magnitude of compressive strains

    Get PDF
    OBJECTIVE: Partial meniscectomy is known to cause osteoarthritis (OA) of the underlying cartilage as well as alter the load on the remaining meniscus. Removal of 30-60% of the medial meniscus increases compressive strains from a maximum of approximately 10% to almost 20%. The goal of this study is to determine if meniscal cells produce catabolic molecules in response to the altered loading that results from a partial meniscectomy. METHOD: Relative changes in gene expression of interleukin-1 (IL-1), inducible nitric oxide synthase (iNOS) and subsequent changes in the concentration of nitric oxide (NO) released by meniscal tissue in response to compression were measured. Porcine meniscal explants were dynamically compressed for 2 h at 1 Hz to simulate physiological stimulation at either 10% strain or 0.05 MPa stress. Additional explants were pathologically stimulated to either 0% strain, 20% strain or, 0.1 MPa stress. RESULTS: iNOS and IL-1 gene expression and NO release into the surrounding media were increased at 20% compressive strain compared to other conditions. Pathological unloading (0% compressive strain) of meniscal explants did not significantly change expression of IL-1 or iNOS genes, but did result in an increased amount of NO released compared to physiological strain of 10%. CONCLUSION: These data suggest that meniscectomies which reduce the surface area of the meniscus by 30-60% will increase the catabolic activity of the meniscus which may contribute to the progression of OA

    Quantifying the Effects of Different Treadmill Training Speeds and Durations on the Health of Rat Knee Joints

    No full text
    Abstract Background Walking and running provide cyclical loading to the knee which is thought essential for joint health within a physiological window. However, exercising outside the physiological window, e.g. excessive cyclical loading, may produce loading conditions that could be detrimental to joint health and lead to injury and, ultimately, osteoarthritis. The purpose of this study was to assess the effects of a stepwise increase in speed and duration of treadmill training on knee joint integrity and to identify the potential threshold for joint damage. Methods Twenty-four Sprague-Dawley rats were randomized into four groups: no exercise, moderate duration, high duration, and extra high duration treadmill exercise. The treadmill training consisted of a 12-week progressive program. Following the intervention period, histologic serial sections of the left knee were graded using a modified Mankin Histology Scoring System. Mechanical testing of the tibial plateau cartilage and RT-qPCR analysis of mRNA from the fat pad, patellar tendon, and synovium were performed for the right knee. Kruskal-Wallis testing was used to assess differences between groups for all variables. Results There were no differences in cartilage integrity or mechanical properties between groups and no differences in mRNA from the fat pad and patellar tendon. However, COX-2 mRNA levels in the synovium were lower for all animals in the exercise intervention groups compared to those in the no exercise group. Conclusions Therefore, these exercise protocols did not exceed the joint physiological window and can likely be used safely in aerobic exercise intervention studies without affecting knee joint health
    corecore