36 research outputs found

    A spatio-temporal analysis to identify the drivers of malaria transmission in Bhutan

    No full text
    At a time when Bhutan is on the verge of malaria elimination, the aim of this study was to identify malaria clusters at high geographical resolution and to determine its association with local environmental characteristics. Malaria cases from 2006-2014 were obtained from the Vector-borne Disease Control Program under the Ministry of Health, Bhutan. A Zero-Inflated Poisson multivariable regression model with a conditional autoregressive (CAR) prior structure was developed. Bayesian Markov chain Monte Carlo (MCMC) simulation with Gibbs sampling was used to estimate posterior parameters. A total of 2,062 Plasmodium falciparum and 2,284 Plasmodium vivax cases were reported during the study period. Both species of malaria showed seasonal peaks with decreasing trend. Gender and age were not associated with the transmission of either species of malaria. P. falciparum increased by 0.7% (95% CrI: 0.3%, 0.9%) for a one mm increase in rainfall, while climatic variables (temperature and rainfall) were not associated with P. vivax. Insecticide treated bed net use and residual indoor insecticide coverage were unaccounted for in this study. Hot spots and clusters of both species were isolated in the central southern part of Bhutan bordering India. There was significant residual spatial clustering after accounting for climate and demographic variables.KW and ZX were supported to undertake this study from the Australian National Health and Medical Research Council (NHMRC) Centre of Research Excellence in Infectious Diseases Modelling to Inform Public Health Policy (PRISM2

    Comparative Analysis of Paddy Harvesting Systems toward Low-Carbon Mechanization in the Future: A Case Study in Sri Lanka

    No full text
    In this study, three paddy harvesting systems, manual harvesting of paddy (MHP), reaper harvesting of paddy (RHP), and combine harvesting of paddy (CHP), were evaluated considering field capacities, field efficiencies, time and fuel consumption, mechanization indices, greenhouse gas emissions, straw availability, and direct and indirect costs. Field experiments were conducted in the North Central Province of Sri Lanka. The effective field capacity, field efficiency and fuel consumption of the combine harvester were 0.34 hah−1, 60.8%, and 34.1 Lha−1, respectively, and those of the paddy reaper were 0.185 hah−1, 58.2%, and 3.8 Lha−1, respectively. The total time consumed by MHP, RHP, and CHP were 76.05 hha−1, 39.76 hha−1, and 2.94 hha−1, respectively. The highest energy utilization was recorded by the CHP, at 1851.09 MJha−1, while MHP recorded the lowest at 643.20 MJha−1. The direct cost of the MHP was 1.50 and 1.52 times higher than those of the CHP and RHP, respectively. MHP recorded the lowest greenhouse gas emissions (32.94 kgCO2eqha−1), while CHP recorded the highest (176.29 kgCO2eqha−1). The RHP exhibited an intermediate level in all aspects. Although the CHP has higher field performance and direct costs, it has higher GHG emissions and indirect costs. Therefore, an optimum level of mechanization should be introduced for the long-term sustainability of both the environment and farming

    Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash

    No full text
    Recycled waste wood is being increasingly used for energy production; however, organic and metal contaminants in by-products produced from the combustion/pyrolysis residue may pose a significant environmental risk if they are disposed of to land. Here we conducted a study to evaluate if highly polluted biochar (from pyrolysis) and ash (from incineration) derived from Cu-based preservative-treated wood led to different metal (e.g., Cu, As, Ni, Cd, Pb, and Zn) bioavailability and accumulation in sunflower (Helianthus annuus L.). In a pot experiment, biochar at a common rate of 2 % w/w, corresponding to ∼50 t ha-1, and an equivalent pre-combustion dose of wood ash (0.2 % w/w) were added to a Eutric Cambisol (pH 6.02) and a Haplic Podzol (pH 4.95), respectively. Both amendments initially raised soil pH, although this effect was relatively short-term, with pH returning close to the unamended control within about 7 weeks. The addition of both amendments resulted in an exceedance of soil Cu statutory limit, together with a significant increase of Cu and plant nutrient (e.g., K) bioavailability. The metal-sorbing capacity of the biochar, and the temporary increase in soil pH caused by adding the ash and biochar were insufficient to offset the amount of free metal released into solution. Sunflower plants were negatively affected by the addition of metal-treated wood-derived biochar and led to elevated concentration of metals in plant tissue, and reduced above- and below-ground biomass, while sunflower did not grow at all in the Haplic Podzol. Biochar and ash derived from wood treated with Cu-based preservatives can lead to extremely high Cu concentrations in soil and negatively affect plant growth. Identifying sources of contaminated wood in waste stream feedstocks is crucial before large-scale application of biochar or wood ash to soil is considered
    corecore