169 research outputs found

    NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers.

    Get PDF
    Nanog, a core pluripotency factor in the inner cell mass of blastocysts, is also expressed in unipotent primordial germ cells (PGCs) in mice, where its precise role is yet unclear. We investigated this in an in vitro model, in which naive pluripotent embryonic stem (ES) cells cultured in basic fibroblast growth factor (bFGF) and activin A develop as epiblast-like cells (EpiLCs) and gain competence for a PGC-like fate. Consequently, bone morphogenetic protein 4 (BMP4), or ectopic expression of key germline transcription factors Prdm1, Prdm14 and Tfap2c, directly induce PGC-like cells (PGCLCs) in EpiLCs, but not in ES cells. Here we report an unexpected discovery that Nanog alone can induce PGCLCs in EpiLCs, independently of BMP4. We propose that after the dissolution of the naive ES-cell pluripotency network during establishment of EpiLCs, the epigenome is reset for cell fate determination. Indeed, we found genome-wide changes in NANOG-binding patterns between ES cells and EpiLCs, indicating epigenetic resetting of regulatory elements. Accordingly, we show that NANOG can bind and activate enhancers of Prdm1 and Prdm14 in EpiLCs in vitro; BLIMP1 (encoded by Prdm1) then directly induces Tfap2c. Furthermore, while SOX2 and NANOG promote the pluripotent state in ES cells, they show contrasting roles in EpiLCs, as Sox2 specifically represses PGCLC induction by Nanog. This study demonstrates a broadly applicable mechanistic principle for how cells acquire competence for cell fate determination, resulting in the context-dependent roles of key transcription factors during development.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1648

    Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines

    Get PDF
    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumoursā€™ biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcriptionā€“quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall

    The reversing of interfaces in slow diffusion processes with strong absorbtion

    Get PDF
    This paper considers a family of one-dimensional nonlinear diffusion equations with absorption. In particular, the solutions that have interfaces that change their direction of propagation are examined. Although this phenomenon of reversing interfaces has been seen numerically, and some special exact solutions have been obtained, there was previously no analytical insight into how this occurs in the general case. The approach taken here is to seek self-similar solutions local to the interface and local to the reversing time. The analysis is split into two parts, one for the solution prior to the reversing time and the other for the solution after the reversing time. In each case the governing PDE is reduced to an ODE by introducing a self-similar coordinate system. These ODEs do not readily admit any nontrivial exact solutions and so the asymptotic behavior of solutions is studied. By doing this the adjustable parameters, or degrees of freedom, which may be used in a numerical shooting scheme are determined. A numerical algorithm is then proposed to furnish solutions to the ODEs and hence the PDE in the limit of interest. As examples of physical problems in which a PDE of this type may be used as a model the authors study the spreading of a viscous film under gravity and subject to evaporation, the dispersion of a population, and a nonlinear heat conduction problem. The numerical algorithm is demonstrated using these examples. Results are also given on the possible existence of self-similar solutions and types of reversing behavior that can be exhibited by PDEs in the family of interest

    A binding site for the cyclic adenosine 3',5'-monophosphate-response element-binding protein as a regulatory element in the grp78 promoter.

    No full text
    The 78-kDa glucose-regulated protein (GRP78) is ubiquitously expressed in many cell types. Its promoter contains multiple protein-binding sites and functional elements. In this study we examined a high affinity protein-binding site spanning bp -198 to -180 of the rat grp78 promoter, using nuclear extracts from both B-lymphoid and HeLa cells. This region contains a sequence TGACGTGA which, with the exception of one base, is identical to the cAMP-response element (CRE). Site-directed mutagenesis reveals that this sequence functions as a major basal level regulatory element in hamster fibroblast cells and is also necessary to maintain high promoter activity under stress-induced conditions. By gel mobility shift analysis, we detect two specific protein complexes. The major specific complex I, while immunologically distinct from the 42-kDa CRE-binding protein (CREB), binds most strongly to the grp site, but also exhibits affinity for the CRE consensus sequence. As such, complex I may consist of other members of the CREB/activating transcription factor protein family. The minor specific complex II consists of CREB or a protein antigenically related to it. A nonspecific complex III consists of the Ku autoantigen, an abundant 70- to 80-kDa protein complex in HeLa nuclear extracts. By cotransfection experiments, we demonstrate that in F9 teratocarcinoma cells, the grp78 promoter can be transactivated by the phosphorylated CREB or when the CREB-transfected cells are treated with the calcium ionophore A23187. The differential regulation of the grp78 gene by cAMP in specific cell types and tissues is discussed.Journal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, P.H.S.info:eu-repo/semantics/publishe
    • ā€¦
    corecore