130 research outputs found

    AFM, SEM and TEM Studies on Porous Anodic Alumina

    Get PDF
    Porous anodic alumina (PAA) has been intensively studied in past decade due to its applications for fabricating nanostructured materials. Since PAA’s pore diameter, thickness and shape vary too much, a systematical study on the methods of morphology characterization is meaningful and essential for its proper development and utilization. In this paper, we present detailed AFM, SEM and TEM studies on PAA and its evolvements with abundant microstructures, and discuss the advantages and disadvantages of each method. The sample preparation, testing skills and morphology analysis are discussed, especially on the differentiation during characterizing complex cross-sections and ultrasmall nanopores. The versatility of PAAs is also demonstrated by the diversity of PAAs’ microstructure

    An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox

    Get PDF
    Authors acknowledge financial support from the National Natural Science Foundation of China (51822210), the Australian Research Council (ARC) for its support through Discover Project (DP 140100193),Shenzhen Peacock Plan (KQJSCX20170331161244761), the Program for Guangdong Innovative and Entrepreneurial Teams (No. 2017ZT07C341), and the Development and Reform Commission of Shenzhen Municipality for the development of the “Low-Dimensional Materials and Devices” discipline.The growing demand for advanced lithium-ion batteries calls for the continued development of high-performance positive electrode materials. Polyoxyanion compounds are receiving considerable interest as alternative cathodes to conventional oxides due to their advantages in cost, safety and environmental friendliness. However, polyanionic cathodes reported so far rely heavily upon transition-metal redox reactions for lithium transfer. Here we show a polyanionic insertion material, Li2Fe(C2O4)2, in which in addition to iron redox activity, the oxalate group itself also shows redox behavior enabling reversible charge/discharge and high capacity without gas evolution. The current study gives oxalate a role as a family of cathode materials and suggests a direction for the identification and design of electrode materials with polyanionic frameworks.Publisher PDFPeer reviewe

    Hydrothermal Synthesis of Delafossite-Type Oxides

    Get PDF
    The syntheses of copper and silver delafossite-type oxides from their constituent binary metal oxides, oxide hydroxides and hydroxides, by low temperature (<210 °C) and low pressure (<20 atm) hydrothermal reactions are described. Particular emphasis is placed on how the acid-base character of a constituent oxide determines its solubility and therefore whether a particular delafossite-type oxide can be synthesized, a strategy utilized by geologists and mineralogists to understand the conditions necessary for the synthesis of various minerals. Thus, the geochemical and corrosion science literature are shown to be useful in understanding the reaction conditions required for the syntheses of delafossite-type oxides and the relationship between reactant metal oxide acid-base character, solubility, aqueous speciation, and product formation. Manipulation of the key parameters, temperature, pressure, pH, and reactant solubility, results in broad families of phase-pure delafossite-type oxides in moderate to high yields for copper, CuBO2 (B) Al, Sc, Cr, Mn, Fe, Co, Ga, and Rh), and silver, AgBO2 (B ) Al, Sc, Fe, Co, Ni, Ga, Rh, In, and Tl)

    Role of the particle size of Fe nanoparticles in the capacity of FeF 3

    No full text
    • 

    corecore