1,526 research outputs found
Constrained simulations of the Antennae Galaxies: Comparison with Herschel-PACS observations
We present a set of hydro-dynamical numerical simulations of the Antennae
galaxies in order to understand the origin of the central overlap starburst.
Our dynamical model provides a good match to the observed nuclear and overlap
star formation, especially when using a range of rather inefficient stellar
feedback efficiencies (0.01 < q_EoS < 0.1). In this case a simple conversion of
local star formation to molecular hydrogen surface density motivated by
observations accounts well for the observed distribution of CO. Using radiative
transfer post-processing we model synthetic far-infrared spectral energy
distributions (SEDs) and two-dimensional emission maps for direct comparison
with Herschel-PACS observations. For a gas-to-dust ratio of 62:1 and the best
matching range of stellar feedback efficiencies the synthetic far-infrared SEDs
of the central star forming region peak at values of ~65 - 81 Jy at 99 - 116
um, similar to a three-component modified black body fit to infrared
observations. Also the spatial distribution of the far-infrared emission at 70
um, 100 um, and 160 um compares well with the observations: >50% (> 35%) of the
emission in each band is concentrated in the overlap region while only < 30% (<
15%) is distributed to the combined emission from the two galactic nuclei in
the simulations (observations). As a proof of principle we show that parameter
variations in the feedback model result in unambiguous changes both in the
global and in the spatially resolved observable far-infrared properties of
Antennae galaxy models. Our results strengthen the importance of direct,
spatially resolved comparative studies of matched galaxy merger simulations as
a valuable tool to constrain the fundamental star formation and feedback
physics.Comment: 17 pages, 8 figures, 4 tables, submitted to MNRAS, including
revisions after first referee report, comments welcom
Comparison of simple mass estimators for slowly rotating elliptical galaxies
We compare the performance of mass estimators for elliptical galaxies that
rely on the directly observable surface brightness and velocity dispersion
profiles, without invoking computationally expensive detailed modeling. These
methods recover the mass at a specific radius where the mass estimate is
expected to be least sensitive to the anisotropy of stellar orbits. One method
(Wolf et al. 2010) uses the total luminosity-weighted velocity dispersion and
evaluates the mass at a 3D half-light radius , i.e., it depends on the
GLOBAL galaxy properties. Another approach (Churazov et al. 2010) estimates the
mass from the velocity dispersion at a radius where the surface
brightness declines as , i.e., it depends on the LOCAL properties. We
evaluate the accuracy of the two methods for analytical models, simulated
galaxies and real elliptical galaxies that have already been modeled by the
Schwarzschild's orbit-superposition technique. Both estimators recover an
almost unbiased circular speed estimate with a modest RMS scatter (). Tests on analytical models and simulated galaxies indicate that the local
estimator has a smaller RMS scatter than the global one. We show by examination
of simulated galaxies that the projected velocity dispersion at could
serve as a good proxy for the virial galaxy mass. For simulated galaxies the
total halo mass scales with as with RMS scatter
.Comment: 19 pages, 14 figures, 4 tables, accepted for publication in MNRA
Triggered Star Formation in the Environment of Young Massive Stars
Recent observations with the Spitzer Space Telescope show clear evidence that
star formation takes place in the surrounding of young massive O-type stars,
which are shaping their environment due to their powerful radiation and stellar
winds. In this work we investigate the effect of ionising radiation of massive
stars on the ambient interstellar medium (ISM): In particular we want to
examine whether the UV-radiation of O-type stars can lead to the observed
pillar-like structures and can trigger star formation. We developed a new
implementation, based on a parallel Smooth Particle Hydrodynamics code (called
IVINE), that allows an efficient treatment of the effect of ionising radiation
from massive stars on their turbulent gaseous environment. Here we present
first results at very high resolution. We show that ionising radiation can
trigger the collapse of an otherwise stable molecular cloud. The arising
structures resemble observed structures (e.g. the pillars of creation in the
Eagle Nebula (M16) or the Horsehead Nebula B33). Including the effect of
gravitation we find small regions that can be identified as formation places of
individual stars. We conclude that ionising radiation from massive stars alone
can trigger substantial star formation in molecular clouds.Comment: 4 pages, 2 figures. To appear in: "Triggered Star Formation in a
Turbulent ISM", IAU Symposium 237, Prague, Czech Republic, August 2006; eds.
B.G.Elmegreen & J. Palou
The SILCC (SImulating the LifeCycle of molecular Clouds) project: I. Chemical evolution of the supernova-driven ISM
The SILCC project (SImulating the Life-Cycle of molecular Clouds) aims at a
more self-consistent understanding of the interstellar medium (ISM) on small
scales and its link to galaxy evolution. We simulate the evolution of the
multi-phase ISM in a 500 pc x 500 pc x 10 kpc region of a galactic disc, with a
gas surface density of .
The Flash 4.1 simulations include an external potential, self-gravity, magnetic
fields, heating and radiative cooling, time-dependent chemistry of H and CO
considering (self-) shielding, and supernova (SN) feedback. We explore SN
explosions at different (fixed) rates in high-density regions (peak), in random
locations (random), in a combination of both (mixed), or clustered in space and
time (clustered). Only random or clustered models with self-gravity (which
evolve similarly) are in agreement with observations. Molecular hydrogen forms
in dense filaments and clumps and contributes 20% - 40% to the total mass,
whereas most of the mass (55% - 75%) is in atomic hydrogen. The ionised gas
contributes <10%. For high SN rates (0.5 dex above Kennicutt-Schmidt) as well
as for peak and mixed driving the formation of H is strongly suppressed.
Also without self-gravity the H fraction is significantly lower (
5%). Most of the volume is filled with hot gas (90% within 2 kpc).
Only for random or clustered driving, a vertically expanding warm component of
atomic hydrogen indicates a fountain flow. Magnetic fields have little impact
on the final disc structure. However, they affect dense gas () and delay H formation. We highlight that individual chemical
species, in particular atomic hydrogen, populate different ISM phases and
cannot be accurately accounted for by simple temperature-/density-based phase
cut-offs.Comment: 30 pages, 23 figures, submitted to MNRAS. Comments welcome! For
movies of the simulations and download of selected Flash data see the SILCC
website: http://www.astro.uni-koeln.de/silc
Scalable N-body code for the modelling of early-type galaxies
Early-type galaxies exhibit a wealth of photometric and dynamical structures.
These signatures are fossil records of their formation and evolution processes.
In order to examine these structures in detail, we build models aimed at
reproducing the observed photometry and kinematics. The developed method is a
generalization of the one introduced by Syer and Tremaine (1996), consisting in
an N-body representation, in which the weights of the particles are changing
with time. Our code is adapted for integral-field spectroscopic data, and is
able to reproduce the photometric as well as stellar kinematic data of observed
galaxies. We apply this technique on SAURON data of early-type galaxies, and
present preliminary results on NGC 3377.Comment: 6 pages, 2 figures. Original version printed in the Proceedings of
"Science perspective for 3D spectroscopy", 2005, Eds Kissler-Patig, Walsh,
Roth, ES0, Springe
Extended, regular HI structures around early-type galaxies
We discuss the morphology and kinematics of the HI of a sample of 30 southern
gas-rich early-type galaxies selected from the
HI Parkes All-Sky Survey (HIPASS). This is the largest collection of
high-resolution HI data of a homogeneously selected sample. Given the
sensitivity of HIPASS, these galaxies represent the most HI-rich early-type
galaxies. In two-thirds of the galaxies, we find the HI to be in a large,
regular disk- or ring-like structure that in some cases is strongly warped. In
the remaining cases we find the HI distributed in irregular tails or clouds
offset from the galaxy. The giant, regular HI structures can be up to ~200 kpc
in diameter and contain up to 10^10 M_sun of HI. The incidence of irregular HI
structures appears to be somewhat higher in elliptical galaxies, but the large,
regular structures are observed in both elliptical and S0 galaxies and are not
strictly connected to the presence of a stellar disk. If these two types of
galaxies are the result of different formation paths, this is not strongly
reflected in the characteristics of the HI. The size and the regular kinematics
of the HI structures imply that the neutral hydrogen must have settled in these
galaxies several Gyr ago. Merging as well as gas accretion from the IGM are
viable explanations for the origin of the gas in these galaxies. The average
column density of the HI is low so that little star formation is expected to
occur and these early-type galaxies can remain gas rich for very long periods
of time. The large HI structures likely represent key structures for tracing
the origin and evolution of these galaxies.Comment: Accepted for publication in A&A, 13 pages, 6 figures. A version with
full resolution figures is available at
http://www.astron.nl/~morganti/Papers/hipass.pd
The SILCC project: III. Regulation of star formation and outflows by stellar winds and supernovae
We study the impact of stellar winds and supernovae on the multi-phase
interstellar medium using three-dimensional hydrodynamical simulations carried
out with FLASH. The selected galactic disc region has a size of (500 pc) x
5 kpc and a gas surface density of 10 M/pc. The simulations
include an external stellar potential and gas self-gravity, radiative cooling
and diffuse heating, sink particles representing star clusters, stellar winds
from these clusters which combine the winds from indi- vidual massive stars by
following their evolution tracks, and subsequent supernova explosions. Dust and
gas (self-)shielding is followed to compute the chemical state of the gas with
a chemical network. We find that stellar winds can regulate star (cluster)
formation. Since the winds suppress the accretion of fresh gas soon after the
cluster has formed, they lead to clusters which have lower average masses
(10 - 10 M) and form on shorter timescales (10 -
10 Myr). In particular we find an anti-correlation of cluster mass and
accretion time scale. Without winds the star clusters easily grow to larger
masses for ~5 Myr until the first supernova explodes. Overall the most massive
stars provide the most wind energy input, while objects beginning their
evolution as B-type stars contribute most of the supernova energy input. A
significant outflow from the disk (mass loading 1 at 1 kpc) can be
launched by thermal gas pressure if more than 50% of the volume near the disc
mid-plane can be heated to T > 3x10 K. Stellar winds alone cannot create a
hot volume-filling phase. The models which are in best agreement with observed
star formation rates drive either no outflows or weak outflows.Comment: 23 pages; submitted to MNRA
- …
