51 research outputs found

    Chaos and residual correlations in pinned disordered systems

    Full text link
    We study, using functional renormalization (FRG), two copies of an elastic system pinned by mutually correlated random potentials. Short scale decorrelation depend on a non trivial boundary layer regime with (possibly multiple) chaos exponents. Large scale mutual displacement correlation behave as ∣x−x′∣2ζ−μ|x-x'|^{2 \zeta - \mu}, the decorrelation exponent μ\mu proportional to the difference between Flory (or mean field) and exact roughness exponent ζ\zeta. For short range disorder μ>0\mu >0 but small, e.g. for random bond interfaces μ=5ζ−ϵ\mu = 5 \zeta - \epsilon, ϵ=4−d\epsilon=4-d, and μ=ϵ((2π)236−1)\mu = \epsilon (\frac{(2 \pi)^2}{36} - 1) for the one component Bragg glass. Random field (i.e long range) disorder exhibits finite residual correlations (no chaos μ=0\mu = 0) described by new FRG fixed points. Temperature and dynamic chaos (depinning) are discussed.Comment: 5 page

    Critical exponents of the driven elastic string in a disordered medium

    Full text link
    We analyze the harmonic elastic string driven through a continuous random potential above the depinning threshold. The velocity exponent beta = 0.33(2) is calculated. We observe a crossover in the roughness exponent zeta from the critical value 1.26 to the asymptotic (large force) value of 0.5. We calculate directly the velocity correlation function and the corresponding correlation length exponent nu = 1.29(5), which obeys the scaling relation nu = 1/(2-zeta), and agrees with the finite-size-scaling exponent of fluctuations in the critical force. The velocity correlation function is non-universal at short distances.Comment: 4 pages, 3 figures. corrected references and typo

    Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films

    Full text link
    The static configuration of ferroelectric domain walls was investigated using atomic force microscopy on epitaxial PbZr0.2Ti0.8O3 thin films. Measurements of domain wall roughness reveal a power law growth of the correlation function of relative displacements B(L) ~ L^(2zeta) with zeta ~ 0.26 at short length scales L, followed by an apparent saturation at large L. In the same films, the dynamic exponent mu was found to be ~ 0.6 from independent measurements of domain wall creep. These results give an effective domain wall dimensionality of d=2.5, in good agreement with theoretical calculations for a two-dimensional elastic interface in the presence of random-bond disorder and long range dipolar interactions.Comment: 5 pages, 4 figure

    Short time relaxation of a driven elastic string in a random medium

    Full text link
    We study numerically the relaxation of a driven elastic string in a two dimensional pinning landscape. The relaxation of the string, initially flat, is governed by a growing length L(t)L(t) separating the short steady-state equilibrated lengthscales, from the large lengthscales that keep memory of the initial condition. We find a macroscopic short time regime where relaxation is universal, both above and below the depinning threshold, different from the one expected for standard critical phenomena. Below the threshold, the zero temperature relaxation towards the first pinned configuration provides a novel, experimentally convenient way to access all the critical exponents of the depinning transition independently.Comment: 4.2 pages, 3 figure

    2-loop Functional Renormalization for elastic manifolds pinned by disorder in N dimensions

    Full text link
    We study elastic manifolds in a N-dimensional random potential using functional RG. We extend to N>1 our previous construction of a field theory renormalizable to two loops. For isotropic disorder with O(N) symmetry we obtain the fixed point and roughness exponent to next order in epsilon=4-d, where d is the internal dimension of the manifold. Extrapolation to the directed polymer limit d=1 allows some handle on the strong coupling phase of the equivalent N-dimensional KPZ growth equation, and eventually suggests an upper critical dimension of about 2.5.Comment: 4 pages, 3 figure

    Contact angle measurements on superhydrophobic Carbon Nanotube Forests : effect of fluid pressure

    Full text link
    In this paper the effect of pressure on the contact angle of a water drop on superhydrophobic Carbon Nanotube (CNT) forests is studied. Superhydrophobic CNT forests are obtained from a new and simple functionalization strategy, based on the gold-thiol affinity. Using a specifically devised experimental setup, we then show that these surfaces are able to withstand high excess pressures (larger than 10 kPa) without transiting toward a roughness-invaded state, therefore preserving their low adhesion properties. Together with the relatively low technical cost of the process, this robustness versus pressure makes such surfaces very appealing for practical integration into microfluidic systems.Comment: accepted for publication in Europhysics Letter

    Thermal Effects in the dynamics of disordered elastic systems

    Full text link
    Many seemingly different macroscopic systems (magnets, ferroelectrics, CDW, vortices,..) can be described as generic disordered elastic systems. Understanding their static and dynamics thus poses challenging problems both from the point of view of fundamental physics and of practical applications. Despite important progress many questions remain open. In particular the temperature has drastic effects on the way these systems respond to an external force. We address here the important question of the thermal effect close to depinning, and whether these effects can be understood in the analogy with standard critical phenomena, analogy so useful to understand the zero temperature case. We show that close to the depinning force temperature leads to a rounding of the depinning transition and compute the corresponding exponent. In addition, using a novel algorithm it is possible to study precisely the behavior close to depinning, and to show that the commonly accepted analogy of the depinning with a critical phenomenon does not fully hold, since no divergent lengthscale exists in the steady state properties of the line below the depinning threshold.Comment: Proceedings of the International Workshop on Electronic Crystals, Cargese(2008

    Width distribution of contact lines on a disordered substrate

    Full text link
    We have studied the roughness of a contact line of a liquid meniscus on a disordered substrate by measuring its width distribution. The comparison between the measured width distribution and the width distribution calculated in previous works, extended here to the case of open boundary conditions, confirms that the Joanny-de Gennes model is not sufficient to describe the dynamics of contact lines at the depinning threshold. This conclusion is in agreement with recent measurements which determine the roughness exponent by extrapolation to large system sizes.Comment: 4 pages, 3 figure

    Dynamics and Kinetic Roughening of Interfaces in Two-Dimensional Forced Wetting

    Full text link
    We consider the dynamics and kinetic roughening of wetting fronts in the case of forced wetting driven by a constant mass flux into a 2D disordered medium. We employ a coarse-grained phase field model with local conservation of density, which has been developed earlier for spontaneous imbibition driven by a capillary forces. The forced flow creates interfaces that propagate at a constant average velocity. We first derive a linearized equation of motion for the interface fluctuations using projection methods. From this we extract a time-independent crossover length ξ×\xi_\times, which separates two regimes of dissipative behavior and governs the kinetic roughening of the interfaces by giving an upper cutoff for the extent of the fluctuations. By numerically integrating the phase field model, we find that the interfaces are superrough with a roughness exponent of χ=1.35±0.05\chi = 1.35 \pm 0.05, a growth exponent of β=0.50±0.02\beta = 0.50 \pm 0.02, and ξ×∼v−1/2\xi_\times \sim v^{-1/2} as a function of the velocity. These results are in good agreement with recent experiments on Hele-Shaw cells. We also make a direct numerical comparison between the solutions of the full phase field model and the corresponding linearized interface equation. Good agreement is found in spatial correlations, while the temporal correlations in the two models are somewhat different.Comment: 9 pages, 4 figures, submitted to Eur.Phys.J.

    Coulombian Disorder in Periodic Systems

    Full text link
    We study the effect of unscreened charged impurities on periodic systems. We show that the long wavelength component of the disorder becomes long ranged and dominates static correlation functions. On the other hand, because of the statistical tilt symmetry, dynamical properties such as pinning remain unaffected. As a concrete example, we focus on the effect of Coulombian disorder generated by charged impurities, on 3D charge density waves with non local elasticity. We calculate the x-ray intensity and find that it is identical to the one produced by thermal fluctuations in a disorder-free smectic-A. We discuss the consequences of these results for experiments.Comment: 11 pages, 3 figures, revtex
    • …
    corecore