16 research outputs found

    Nano-Antimicrobial Solutions Using Synthetic-Natural Hybrid Designs

    Get PDF
    Nanotechnology potential in antimicrobial therapy is increasingly demonstrated by various data. Results reveal antibacterial properties, comparable to that of conventional antibiotics. Working on parallel experiments, researchers continue to bring evidence demonstrating age-old-recognized antibacterial properties of various natural components of plant and animal origin. Later years brought an increasing trend for combining synthetic and natural composition in new constructs. The tendency aims to bring more on different essential aspects, such as active substance release, improvement of antibacterial effect, and up-regulation of the mechanisms at the structure-cell interface. Present chapter structures the up-to-date achievements in the field, including the concept of design, biological effects, benefits, mechanisms, and limitations of the field. Also, expected future research directions are to be discussed

    An Integrate Approach to Curriculum Design: Teaching and Assessing Practical Skills (eMediqual)

    No full text

    Photothermal treatment of liver cancer with albumin-conjugated gold nanoparticles initiates Golgi Apparatus–ER dysfunction and caspase-3 apoptotic pathway activation by selective targeting of Gp60 receptor [Corrigendum]

    No full text
    Mocan L, Matea C, Tabaran FA, et al. Int J Nanomedicine. 2015;10:5435-5445Page 5445, the Author contributions section shown below should have been included before the Disclosure section.Author contributionsAll authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation ofdata; took part in either drafting the article or revising it critically for important intellectual content; gave final approval of the version to be published; and agree to be accountable for all aspects of the work. All authors contributed equally to this paper.Read the original articl

    Quantum dots in imaging, drug delivery and sensor applications

    No full text
    Cristian T Matea,1,* Teodora Mocan,1,2,* Flaviu Tabaran,1,3,* Teodora Pop,1,4,* Ofelia Mosteanu,1,4,* Cosmin Puia,1,5,* Cornel Iancu,1,5,* Lucian Mocan1,5,* 1Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 2Department of Physiology, University of Medicine and Pharmacy, “Iuliu Hatieganu”, 3Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 4Department of Gastroenterology, 5Department of Surgery, University of Medicine and Pharmacy, “Iuliu Hatieganu”, Cluj-Napoca, Romania *These authors contributed equally to this work Abstract: Quantum dots (QDs), also known as nanoscale semiconductor crystals, are nanoparticles with unique optical and electronic properties such as bright and intensive fluorescence. Since most conventional organic label dyes do not offer the near-infrared (>650 nm) emission possibility, QDs, with their tunable optical properties, have gained a lot of interest. They possess characteristics such as good chemical and photo-stability, high quantum yield and size-tunable light emission. Different types of QDs can be excited with the same light wavelength, and their narrow emission bands can be detected simultaneously for multiple assays. There is an increasing interest in the development of nano-theranostics platforms for simultaneous sensing, imaging and therapy. QDs have great potential for such applications, with notable results already published in the fields of sensors, drug delivery and biomedical imaging. This review summarizes the latest developments available in literature regarding the use of QDs for medical applications. Keywords: quantum dots, biomedical applications, nanoprobes, theranostic platform

    Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles

    No full text
    Lucian Mocan,1,2 Flaviu A Tabaran,3 Teodora Mocan,2,4 Teodora Pop,5 Ofelia Mosteanu,5 Lucia Agoston-Coldea,6 Cristian T Matea,2 Diana Gonciar,2 Claudiu Zdrehus,1,2 Cornel Iancu1 13rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2Department of Nanomedicine, “Octavian Fodor” Gastroenterology Institute, 3Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, 4Department of Physiology, 53rd Gastroenterology Department, 6Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania Abstract: The issue of multidrug resistance (MDR) has become an increasing threat to public health. One alternative strategy against MDR bacteria would be to construct therapeutic vectors capable of physically damaging these microorganisms. Gold nanoparticles hold great promise for the development of such therapeutic agents, since the nanoparticles exhibit impressive properties, of which the most important is the ability to convert light into heat. This property has scientific significance since is exploited to develop nano-photothermal vectors to destroy bacteria at a molecular level. The present paper summarizes the latest advancements in the field of nanotargeted laser hyperthermia of MDR bacteria mediated by gold nanoparticles. Keywords: bacteria, photo-thermal ablation, gold nanoparticles, antibiotic resistanc

    Development of nanoparticle-based optical sensors for pathogenic bacterial detection

    No full text
    Abstract Background Pathogenic bacteria contribute to various globally important diseases, killing millions of people each year. Various fields of medicine currently benefit from or may potentially benefit from the use of nanotechnology applications, in which there is growing interest. Disease-related biomarkers can be rapidly and directly detected by nanostructures, such as nanowires, nanotubes, nanoparticles, cantilevers, microarrays, and nanoarrays, as part of an accurate process characterized by lower sample consumption and considerably higher sensitivity. There is a need for accurate techniques for pathogenic bacteria identification and detection to allow the prevention and management of pathogenic diseases and to assure food safety. Conclusion The focus of this review is on the current nanoparticle-based techniques for pathogenic bacterial identification and detection using these applications
    corecore