663 research outputs found

    Spin-dependent resonant tunneling through quantum-well states in magnetic metallic thin films

    Full text link
    Quantum-well (QW) states in {\it nonmagnetic} metal layers contained in magnetic multilayers are known to be important in spin-dependent transport, but the role of QW states in {\it magnetic} layers remains elusive. Here we identify the conditions and mechanisms for resonant tunneling through QW states in magnetic layers and determine candidate structures. We report first-principles calculations of spin-dependent transport in epitaxial Fe/MgO/FeO/Fe/Cr and Co/MgO/Fe/Cr tunnel junctions. We demonstrate the formation of sharp QW states in the Fe layer and show discrete conductance jumps as the QW states enter the transport window with increasing bias. At resonance, the current increases by one to two orders of magnitude. The tunneling magnetoresistance ratio is several times larger than in simple spin tunnel junctions and is positive (negative) for majority- (minority-) spin resonances, with a large asymmetry between positive and negative biases. The results can serve as the basis for novel spintronic devices.Comment: 4 figures in 5 eps file

    Current-induced magnetization dynamics in disordered itinerant ferromagnets

    Full text link
    Current-driven magnetization dynamics in ferromagnetic metals are studied in a self-consistent adiabatic local-density approximation in the presence of spin-conserving and spin-dephasing impurity scattering. Based on a quantum kinetic equation, we derive Gilbert damping and spin-transfer torques entering the Landau-Lifshitz equation to linear order in frequency and wave vector. Gilbert damping and a current-driven dissipative torque scale identically and compete, with the result that a steady current-driven domain-wall motion is insensitive to spin dephasing in the limit of weak ferromagnetism. A uniform magnetization is found to be much more stable against spin torques in the itinerant than in the \textit{s}-\textit{d} model for ferromagnetism. A dynamic spin-transfer torque reminiscent of the spin pumping in multilayers is identified and shown to govern the current-induced domain-wall distortion

    Efficient nonlinear room-temperature spin injection from ferromagnets into semiconductors through a modified Schottky barrier

    Full text link
    We suggest a consistent microscopic theory of spin injection from a ferromagnet (FM) into a semiconductor (S). It describes tunneling and emission of electrons through modified FM-S Schottky barrier with an ultrathin heavily doped interfacial S layer . We calculate nonlinear spin-selective properties of such a reverse-biased FM-S junction, its nonlinear I-V characteristic, current saturation, and spin accumulation in S. We show that the spin polarization of current, spin density, and penetration length increase with the total current until saturation. We find conditions for most efficient spin injection, which are opposite to the results of previous works, since the present theory suggests using a lightly doped resistive semiconductor. It is shown that the maximal spin polarizations of current and electrons (spin accumulation) can approach 100% at room temperatures and low current density in a nondegenerate high-resistance semiconductor.Comment: 7 pages, 2 figures; provides detailed comparison with earlier works on spin injectio

    The occurrence of two morphologically similar Chaetozone (Annelida: Polychaeta: Cirratulidae) species from the Italian seas: Chaetozone corona Berkeley & Berkeley, 1941 and C. carpenteri McIntosh, 1911

    Get PDF
    The present study reports the spread of the cirratulids Chaetozone corona Berkeley & Berkeley, 1941 and Chaetozone carpenteri McIntosh, 1911 in the Western Central Adriatic Sea, off the coasts of Pescara (Italy). The two species were collected between 2014 and 2016 from soft bottom stations (at depths from 16.5 to 130 m) where the environment was more or less disturbed due to fishing activities. One specimen of C. corona was found also off the coast of Calafuria (Livorno, Italy), representing the first record of this species in the Tyrrhenian Sea. Chaetozone carpenteri could be a native species present in the Mediterranean for a long time but rarely recorded because of taxonomic confusion. Chaetozone corona was already known from the eastern Mediterranean Sea (except from the Adriatic Sea), where it is considered an established alien species. Our results extend the geographic range of these two cirratulid species, providing some information on their ecology and habitat preference. We also suggest a likely vector of spread of C. corona from the easternmost part of the Mediterranean towards the study area. The finding of reproducing specimens of C. corona and C. carpenteri supports the hypothesis that these two species have found a suitable habitat in the Western Central Adriatic Sea, and there will become well established. Although nothing suggests that C. corona would be invasive, it may, however, compete with native species. These findings also seem particularly relevant in order to improve the knowledge of Mediterranean biodiversity

    Spin-orbit coupling in ferromagnetic Nickel

    Full text link
    We use the Gutzwiller variational theory to investigate the electronic and the magnetic properties of fcc-Nickel. Our particular focus is on the effects of the spin-orbit coupling. Unlike standard relativistic band-structure theories, we reproduce the experimental magnetic moment direction and we explain the change of the Fermi-surface topology that occurs when the magnetic moment direction is rotated by an external magnetic field. The Fermi surface in our calculation deviates from early de-Haas--van-Alphen (dHvA) results. We attribute these discrepancies to an incorrect interpretation of the raw dHvA data.Comment: 4 pages, 3 figures, submitted to PR

    Sediment contamination by heavy metals and PAH in the Piombino Channel (Tyrrhenian Sea).

    Get PDF
    Sediment contamination is of major concern in areas affected by heavy maritime traffic. The spatial variation and contamination of 11 trace elements and 17 PAHs in surface sediments were studied along a 31 km transect along the seaway from the port of Piombino (Tuscany) to the port of Portoferraio (Elba Island) in the Northern Tyrrhenian Sea. Heavy metal contamination was detected at sites near Piombino (Ni, Pb, Hg, Cu and Zn) and at sites near Portoferraio (Pb, Zn, Hg, Cr and Cd). Each of the 35 sampled sites showed PAH contamination, with the highest concentrations at sites near Portoferraio. The most abundant isomers detected were 2- and 4-ring PAHs. PAH ratio analysis showed a prevalence of PAHs of pyrolytic origin. High values of PAHs and heavy metals were related to high sediment water content, TOC, silt, and clay content. Arsenic increased with increasing depth. The correlation between concentrations of metals and PAHs suggests common anthropogenic sources and is of concern for possible synergistic adverse effects on the biota

    Boron in copper: a perfect misfit in the bulk and cohesion enhancer at a grain boundary

    Full text link
    Our ab initio study suggests that boron segregation to the Sigma 5(310)[001] grain boundary should strengthen the boundary up to 1.5 ML coverage (15.24 at/nm^2). The maximal effect is observed at 0.5 ML and corresponds to boron atoms filling exclusively grain boundary interstices. In copper bulk, B causes significant distortion both in interstitial and regular lattice sites for which boron atoms are either too big or too small. The distortion is compensated to large extent when the interstitial and substitutional boron combine together to form a strongly bound dumbell. Our prediction is that bound boron impurities should appear in sizable proportion if not dominate in most experimental conditions. A large discrepancy between calculated heats of solution and experimental terminal solubility of B in Cu is found, indicating either a sound failure of the local density approximation or, more likely, strongly overestimated solubility limits in the existing B-Cu phase diagram.Comment: 16 pages, 9 figure

    Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first principles calculations for copper

    Full text link
    First principles calculations of the Sigma 5 (310)[001] symmetric tilt grain boundary in Cu with Bi, Na, and Ag substitutional impurities provide evidence that in the phenomenon of Bi embrittlement of Cu grain boundaries electronic effects do not play a major role; on the contrary, the embrittlement is mostly a structural or "size" effect. Na is predicted to be nearly as good an embrittler as Bi, whereas Ag does not embrittle the boundary in agreement with experiment. While we reject the prevailing view that "electronic" effects (i.e., charge transfer) are responsible for embrittlement, we do not exclude the role of chemistry. However numerical results show a striking equivalence between the alkali metal Na and the semi metal Bi, small differences being accounted for by their contrasting "size" and "softness" (defined here). In order to separate structural and chemical effects unambiguously if not uniquely, we model the embrittlement process by taking the system of grain boundary and free surfaces through a sequence of precisely defined gedanken processes; each of these representing a putative mechanism. We thereby identify three mechanisms of embrittlement by substitutional impurities, two of which survive in the case of embrittlement or cohesion enhancement by interstitials. Two of the three are purely structural and the third contains both structural and chemical elements that by their very nature cannot be further unravelled. We are able to take the systems we study through each of these stages by explicit computer simulations and assess the contribution of each to the nett reduction in intergranular cohesion. The conclusion we reach is that embrittlement by both Bi and Na is almost exclusively structural in origin; that is, the embrittlement is a size effect.Comment: 13 pages, 5 figures; Accepted in Phys. Rev.

    Scattering polarization of hydrogen lines from electric-induced atomic alignment

    Full text link
    We consider a gas of hydrogen atoms illuminated by a broadband, unpolarized radiation with zero anisotropy. In the absence of external fields, the atomic J-levels are thus isotropically populated. While this condition persists in the presence of a magnetic field, we show instead that electric fields can induce the alignment of those levels. We also show that this electric alignment cannot occur in a two-term model of hydrogen (e.g., if only the Ly-alpha transition is excited), or if the level populations are distributed according to Boltzmann's law.Comment: 10 pages, 4 figures. Accepted by J.Phys.B: At.Mol.Opt.Phy

    Atomic correlations in itinerant ferromagnets: quasi-particle bands of nickel

    Full text link
    We measure the band structure of nickel along various high-symmetry lines of the bulk Brillouin zone with angle-resolved photoelectron spectroscopy. The Gutzwiller theory for a nine-band Hubbard model whose tight-binding parameters are obtained from non-magnetic density-functional theory resolves most of the long-standing discrepancies between experiment and theory on nickel. Thereby we support the view of itinerant ferromagnetism as induced by atomic correlations.Comment: 4 page REVTeX 4.0, one figure, one tabl
    corecore