663 research outputs found
Spin-dependent resonant tunneling through quantum-well states in magnetic metallic thin films
Quantum-well (QW) states in {\it nonmagnetic} metal layers contained in
magnetic multilayers are known to be important in spin-dependent transport, but
the role of QW states in {\it magnetic} layers remains elusive. Here we
identify the conditions and mechanisms for resonant tunneling through QW states
in magnetic layers and determine candidate structures. We report
first-principles calculations of spin-dependent transport in epitaxial
Fe/MgO/FeO/Fe/Cr and Co/MgO/Fe/Cr tunnel junctions. We demonstrate the
formation of sharp QW states in the Fe layer and show discrete conductance
jumps as the QW states enter the transport window with increasing bias. At
resonance, the current increases by one to two orders of magnitude. The
tunneling magnetoresistance ratio is several times larger than in simple spin
tunnel junctions and is positive (negative) for majority- (minority-) spin
resonances, with a large asymmetry between positive and negative biases. The
results can serve as the basis for novel spintronic devices.Comment: 4 figures in 5 eps file
Current-induced magnetization dynamics in disordered itinerant ferromagnets
Current-driven magnetization dynamics in ferromagnetic metals are studied in
a self-consistent adiabatic local-density approximation in the presence of
spin-conserving and spin-dephasing impurity scattering. Based on a quantum
kinetic equation, we derive Gilbert damping and spin-transfer torques entering
the Landau-Lifshitz equation to linear order in frequency and wave vector.
Gilbert damping and a current-driven dissipative torque scale identically and
compete, with the result that a steady current-driven domain-wall motion is
insensitive to spin dephasing in the limit of weak ferromagnetism. A uniform
magnetization is found to be much more stable against spin torques in the
itinerant than in the \textit{s}-\textit{d} model for ferromagnetism. A dynamic
spin-transfer torque reminiscent of the spin pumping in multilayers is
identified and shown to govern the current-induced domain-wall distortion
Efficient nonlinear room-temperature spin injection from ferromagnets into semiconductors through a modified Schottky barrier
We suggest a consistent microscopic theory of spin injection from a
ferromagnet (FM) into a semiconductor (S). It describes tunneling and emission
of electrons through modified FM-S Schottky barrier with an ultrathin heavily
doped interfacial S layer . We calculate nonlinear spin-selective properties of
such a reverse-biased FM-S junction, its nonlinear I-V characteristic, current
saturation, and spin accumulation in S. We show that the spin polarization of
current, spin density, and penetration length increase with the total current
until saturation. We find conditions for most efficient spin injection, which
are opposite to the results of previous works, since the present theory
suggests using a lightly doped resistive semiconductor. It is shown that the
maximal spin polarizations of current and electrons (spin accumulation) can
approach 100% at room temperatures and low current density in a nondegenerate
high-resistance semiconductor.Comment: 7 pages, 2 figures; provides detailed comparison with earlier works
on spin injectio
The occurrence of two morphologically similar Chaetozone (Annelida: Polychaeta: Cirratulidae) species from the Italian seas: Chaetozone corona Berkeley & Berkeley, 1941 and C. carpenteri McIntosh, 1911
The present study reports the spread of the cirratulids Chaetozone corona Berkeley & Berkeley, 1941 and Chaetozone carpenteri McIntosh, 1911 in the Western Central Adriatic Sea, off the coasts of Pescara (Italy). The two species were collected between 2014 and 2016 from soft bottom stations (at depths from 16.5 to 130 m) where the environment was more or less disturbed due to fishing activities. One specimen of C. corona was found also off the coast of Calafuria (Livorno, Italy), representing the first record of this species in the Tyrrhenian Sea. Chaetozone carpenteri could be a native species present in the Mediterranean for a long time but rarely recorded because of taxonomic confusion. Chaetozone corona was already known from the eastern Mediterranean Sea (except from the Adriatic Sea), where it is considered an established alien species. Our results extend the geographic range of these two cirratulid species, providing some information on their ecology and habitat preference. We also suggest a likely vector of spread of C. corona from the easternmost part of the Mediterranean towards the study area. The finding of reproducing specimens of C. corona and C. carpenteri supports the hypothesis that these two species have found a suitable habitat in the Western Central Adriatic Sea, and there will become well established. Although nothing suggests that C. corona would be invasive, it may, however, compete with native species. These findings also seem particularly relevant in order to improve the knowledge of Mediterranean biodiversity
Spin-orbit coupling in ferromagnetic Nickel
We use the Gutzwiller variational theory to investigate the electronic and
the magnetic properties of fcc-Nickel. Our particular focus is on the effects
of the spin-orbit coupling. Unlike standard relativistic band-structure
theories, we reproduce the experimental magnetic moment direction and we
explain the change of the Fermi-surface topology that occurs when the magnetic
moment direction is rotated by an external magnetic field. The Fermi surface in
our calculation deviates from early de-Haas--van-Alphen (dHvA) results. We
attribute these discrepancies to an incorrect interpretation of the raw dHvA
data.Comment: 4 pages, 3 figures, submitted to PR
Sediment contamination by heavy metals and PAH in the Piombino Channel (Tyrrhenian Sea).
Sediment contamination is of major concern in areas affected by heavy maritime traffic. The spatial variation and contamination of 11 trace elements and 17 PAHs in surface sediments were studied along a 31 km transect along the seaway from the port of Piombino (Tuscany) to the port of Portoferraio (Elba Island) in the Northern Tyrrhenian Sea. Heavy metal contamination was detected at sites near Piombino (Ni, Pb, Hg, Cu and Zn) and at sites near Portoferraio (Pb, Zn, Hg, Cr and Cd). Each of the 35 sampled sites showed PAH contamination, with the highest concentrations at sites near Portoferraio. The most abundant isomers detected were 2- and 4-ring PAHs. PAH ratio analysis showed a prevalence of PAHs of pyrolytic origin. High values of PAHs and heavy metals were related to high sediment water content, TOC, silt, and clay content. Arsenic increased with increasing depth. The correlation between concentrations of metals and PAHs suggests common anthropogenic sources and is of concern for possible synergistic adverse effects on the biota
Boron in copper: a perfect misfit in the bulk and cohesion enhancer at a grain boundary
Our ab initio study suggests that boron segregation to the Sigma 5(310)[001]
grain boundary should strengthen the boundary up to 1.5 ML coverage (15.24
at/nm^2). The maximal effect is observed at 0.5 ML and corresponds to boron
atoms filling exclusively grain boundary interstices. In copper bulk, B causes
significant distortion both in interstitial and regular lattice sites for which
boron atoms are either too big or too small. The distortion is compensated to
large extent when the interstitial and substitutional boron combine together to
form a strongly bound dumbell. Our prediction is that bound boron impurities
should appear in sizable proportion if not dominate in most experimental
conditions. A large discrepancy between calculated heats of solution and
experimental terminal solubility of B in Cu is found, indicating either a sound
failure of the local density approximation or, more likely, strongly
overestimated solubility limits in the existing B-Cu phase diagram.Comment: 16 pages, 9 figure
Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first principles calculations for copper
First principles calculations of the Sigma 5 (310)[001] symmetric tilt grain
boundary in Cu with Bi, Na, and Ag substitutional impurities provide evidence
that in the phenomenon of Bi embrittlement of Cu grain boundaries electronic
effects do not play a major role; on the contrary, the embrittlement is mostly
a structural or "size" effect. Na is predicted to be nearly as good an
embrittler as Bi, whereas Ag does not embrittle the boundary in agreement with
experiment. While we reject the prevailing view that "electronic" effects
(i.e., charge transfer) are responsible for embrittlement, we do not exclude
the role of chemistry. However numerical results show a striking equivalence
between the alkali metal Na and the semi metal Bi, small differences being
accounted for by their contrasting "size" and "softness" (defined here). In
order to separate structural and chemical effects unambiguously if not
uniquely, we model the embrittlement process by taking the system of grain
boundary and free surfaces through a sequence of precisely defined gedanken
processes; each of these representing a putative mechanism. We thereby identify
three mechanisms of embrittlement by substitutional impurities, two of which
survive in the case of embrittlement or cohesion enhancement by interstitials.
Two of the three are purely structural and the third contains both structural
and chemical elements that by their very nature cannot be further unravelled.
We are able to take the systems we study through each of these stages by
explicit computer simulations and assess the contribution of each to the nett
reduction in intergranular cohesion. The conclusion we reach is that
embrittlement by both Bi and Na is almost exclusively structural in origin;
that is, the embrittlement is a size effect.Comment: 13 pages, 5 figures; Accepted in Phys. Rev.
Scattering polarization of hydrogen lines from electric-induced atomic alignment
We consider a gas of hydrogen atoms illuminated by a broadband, unpolarized
radiation with zero anisotropy. In the absence of external fields, the atomic
J-levels are thus isotropically populated. While this condition persists in the
presence of a magnetic field, we show instead that electric fields can induce
the alignment of those levels. We also show that this electric alignment cannot
occur in a two-term model of hydrogen (e.g., if only the Ly-alpha transition is
excited), or if the level populations are distributed according to Boltzmann's
law.Comment: 10 pages, 4 figures. Accepted by J.Phys.B: At.Mol.Opt.Phy
Atomic correlations in itinerant ferromagnets: quasi-particle bands of nickel
We measure the band structure of nickel along various high-symmetry lines of
the bulk Brillouin zone with angle-resolved photoelectron spectroscopy. The
Gutzwiller theory for a nine-band Hubbard model whose tight-binding parameters
are obtained from non-magnetic density-functional theory resolves most of the
long-standing discrepancies between experiment and theory on nickel. Thereby we
support the view of itinerant ferromagnetism as induced by atomic correlations.Comment: 4 page REVTeX 4.0, one figure, one tabl
- …