403 research outputs found

    The role of elasticity in simulating long-term tectonic extension

    Get PDF
    Author Posting. © Oxford University Press, 2016. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 205 (2016): 728-743, doi:10.1093/gji/ggw044.While elasticity is a defining characteristic of the Earth's lithosphere, it is often ignored in numerical models of long-term tectonic processes in favour of a simpler viscoplastic description. Here we assess the consequences of this assumption on a well-studied geodynamic problem: the growth of normal faults at an extensional plate boundary. We conduct 2-D numerical simulations of extension in elastoplastic and viscoplastic layers using a finite difference, particle-in-cell numerical approach. Our models simulate a range of faulted layer thicknesses and extension rates, allowing us to quantify the role of elasticity on three key observables: fault-induced topography, fault rotation, and fault life span. In agreement with earlier studies, simulations carried out in elastoplastic layers produce rate-independent lithospheric flexure accompanied by rapid fault rotation and an inverse relationship between fault life span and faulted layer thickness. By contrast, models carried out with a viscoplastic lithosphere produce results that may qualitatively resemble the elastoplastic case, but depend strongly on the product of extension rate and layer viscosity U × ηL. When this product is high, fault growth initially generates little deformation of the footwall and hanging wall blocks, resulting in unrealistic, rigid block-offset in topography across the fault. This configuration progressively transitions into a regime where topographic decay associated with flexure is fully accommodated within the numerical domain. In addition, high U × ηL favours the sequential growth of multiple short-offset faults as opposed to a large-offset detachment. We interpret these results by comparing them to an analytical model for the fault-induced flexure of a thin viscous plate. The key to understanding the viscoplastic model results lies in the rate-dependence of the flexural wavelength of a viscous plate, and the strain rate dependence of the force increase associated with footwall and hanging wall bending. This behaviour produces unrealistic deformation patterns that can hinder the geological relevance of long-term rifting models that assume a viscoplastic rheology.This work was supported by NSF grants OCE-11-54238 (JAO, MDB), EAR-10-10432 (MDB) and OCE-11-55098 (GI), as well as a WHOI Deep Exploration Institute grant and start-up support from the University of Idaho (EM)

    Types of quantum information

    Full text link
    Quantum, in contrast to classical, information theory, allows for different incompatible types (or species) of information which cannot be combined with each other. Distinguishing these incompatible types is useful in understanding the role of the two classical bits in teleportation (or one bit in one-bit teleportation), for discussing decoherence in information-theoretic terms, and for giving a proper definition, in quantum terms, of ``classical information.'' Various examples (some updating earlier work) are given of theorems which relate different incompatible kinds of information, and thus have no counterparts in classical information theory.Comment: Minor changes so as to agree with published versio

    Poincare gauge invariance and gravitation in Minkowski spacetime

    Full text link
    A formulation of Poincare symmetry as an inner symmetry of field theories defined on a fixed Minkowski spacetime is given. Local P gauge transformations and the corresponding covariant derivative with P gauge fields are introduced. The renormalization properties of scalar, spinor and vector fields in P gauge field backgrounds are determined. A minimal gauge field dynamics consistent with the renormalization constraints is given.Comment: 36 pages, latex-fil

    Classical Vs Quantum Probability in Sequential Measurements

    Full text link
    We demonstrate in this paper that the probabilities for sequential measurements have features very different from those of single-time measurements. First, they cannot be modelled by a classical stochastic process. Second, they are contextual, namely they depend strongly on the specific measurement scheme through which they are determined. We construct Positive-Operator-Valued measures (POVM) that provide such probabilities. For observables with continuous spectrum, the constructed POVMs depend strongly on the resolution of the measurement device, a conclusion that persists even if we consider a quantum mechanical measurement device or the presence of an environment. We then examine the same issues in alternative interpretations of quantum theory. We first show that multi-time probabilities cannot be naturally defined in terms of a frequency operator. We next prove that local hidden variable theories cannot reproduce the predictions of quantum theory for sequential measurements, even when the degrees of freedom of the measuring apparatus are taken into account. Bohmian mechanics, however, does not fall in this category. We finally examine an alternative proposal that sequential measurements can be modelled by a process that does not satisfy the Kolmogorov axioms of probability. This removes contextuality without introducing non-locality, but implies that the empirical probabilities cannot be always defined (the event frequencies do not converge). We argue that the predictions of this hypothesis are not ruled out by existing experimental results (examining in particular the "which way" experiments); they are, however, distinguishable in principle.Comment: 56 pages, latex; revised and restructured. Version to appear in Found. Phy

    A geometrical origin for the covariant entropy bound

    Full text link
    Causal diamond-shaped subsets of space-time are naturally associated with operator algebras in quantum field theory, and they are also related to the Bousso covariant entropy bound. In this work we argue that the net of these causal sets to which are assigned the local operator algebras of quantum theories should be taken to be non orthomodular if there is some lowest scale for the description of space-time as a manifold. This geometry can be related to a reduction in the degrees of freedom of the holographic type under certain natural conditions for the local algebras. A non orthomodular net of causal sets that implements the cutoff in a covariant manner is constructed. It gives an explanation, in a simple example, of the non positive expansion condition for light-sheet selection in the covariant entropy bound. It also suggests a different covariant formulation of entropy bound.Comment: 20 pages, 8 figures, final versio

    Quantitative wave-particle duality and non-erasing quantum erasure

    Get PDF
    The notion of wave-particle duality may be quantified by the inequality V^2+K^2 <=1, relating interference fringe visibility V and path knowledge K. With a single-photon interferometer in which polarization is used to label the paths, we have investigated the relation for various situations, including pure, mixed, and partially-mixed input states. A quantum eraser scheme has been realized that recovers interference fringes even when no which-way information is available to erase.Comment: 6 pages, 4 figures. To appear in Phys. Rev.

    Neural noise distorts perceived motion: the special case of the freezing illusion and the Pavard and Berthoz effect

    Get PDF
    When a slowly moving pattern is presented on a monitor which itself is moved, the pattern appears to freeze on the screen (Mesland and Wertheim in Vis Res 36(20):3325–3328, 1996) even if we move our head with the monitor, as with a head mounted display (Pavard and Berthoz in Perception 6:529–540, 1977). We present a simple model of these phenomena, which states that the perceived relative velocity between two stimuli (the pattern and the moving monitor) is proportional to the difference between the perceived velocities of these stimuli in space, minus a noise factor. The latter reflects the intrinsic noise in the neural signals that encode retinal image velocities. With noise levels derived from the literature the model fits empirical data well and also predicts strong distortions of visually perceived motion during vestibular stimulation, thus explaining both illusions as resulting from the same mechanism

    Quantum Locality

    Full text link
    It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is no reason to suspect any conflict between quantum theory and special relativity.Comment: Introduction has been revised, references added, minor corrections elsewhere. To appear in Foundations of Physic

    Interpreting Quantum Particles as Conceptual Entities

    Full text link
    We elaborate an interpretation of quantum physics founded on the hypothesis that quantum particles are conceptual entities playing the role of communication vehicles between material entities composed of ordinary matter which function as memory structures for these quantum particles. We show in which way this new interpretation gives rise to a natural explanation for the quantum effects of interference and entanglement by analyzing how interference and entanglement emerge for the case of human concepts. We put forward a scheme to derive a metric based on similarity as a predecessor for the structure of 'space, time, momentum, energy' and 'quantum particles interacting with ordinary matter' underlying standard quantum physics, within the new interpretation, and making use of aspects of traditional quantum axiomatics. More specifically, we analyze how the effect of non-locality arises as a consequence of the confrontation of such an emerging metric type of structure and the remaining presence of the basic conceptual structure on the fundamental level, with the potential of being revealed in specific situations.Comment: 19 pages, 1 figur
    • …
    corecore