369 research outputs found

    Drift-Kinetic Modeling of Particle Acceleration and Transport in Solar Flares

    Full text link
    Based on the drift-kinetic theory, we develop a model for particle acceleration and transport in solar flares. The model describes the evolution of the particle distribution function by means of a numerical simulation of the drift-kinetic Vlasov equation, which allows us to directly compare simulation results with observations within an actual parameter range of the solar corona. Using this model, we investigate the time evolution of the electron distribution in a flaring region. The simulation identifies two dominant mechanisms of electron acceleration. One is the betatron acceleration at the top of closed loops, which enhances the electron velocity perpendicular to the magnetic field line. The other is the inertia drift acceleration in open magnetic field lines, which produces antisunward electrons. The resulting velocity space distribution significantly deviates from an isotropic distribution. The former acceleration can be a generation mechanism of electrons that radiate loop-top nonthermal emissions, and the latter be of escaping electrons from the Sun that should be observed by in-situ measurements in interplanetary space and resulting radio bursts through plasma instabilities.Comment: 32 Pages, 11 figures, accepted by Ap

    Hyperlink Management System and ID Converter System: enabling maintenance-free hyperlinks among major biological databases

    Get PDF
    Hyperlink Management System (HMS) is a system for automatically updating and maintaining hyperlinks among major public databases in the field of life science. We daily create corresponding tables of data IDs of major databases for human genes and proteins, and provide a CGI-program that returns correct and up-to-date URLs for showing data of various databases that correspond to user-specified IDs. The HMS can deal with various IDs: accession numbers of International Nucleotide Sequence Databases, HUGO Gene Symbols and IDs of UniProt, PDB, H-InvDB and others, and it can return URLs of various databases: H-InvDB, HUGO Gene Nomenclature Committee Database, NCBI Entrez Gene, UniProt, PDB and others. For example, 23 297 pages of Locus view of H-InvDB are reachable by using HUGO Gene Symbols through the HMS. Not only the CGI-program, the HMS provides a Web page for finding and opening URLs of these databases. Although hyperlinking is an effective way of relating biological data among different databases, updating hyperlinks has been a laborious work. The HMS fully automates the job, enabling maintenance-free hyperlinks. We also developed the ID Converter System (ICS) for simply converting data IDs by using corresponding tables in the HMS. The HMS and ICS are freely available at http://biodb.jp/

    Flare Ribbons Observed with G-band and FeI 6302A Filters of the Solar Optical Telescope on Board Hinode

    Full text link
    The Solar Optical Telescope (SOT) on board Hinode satellite observed an X3.4 class flare on 2006 December 13. Typical two-ribbon structure was observed, not only in the chromospheric CaII H line but also in G-band and FeI 6302A line. The high-resolution, seeing-free images achieved by SOT revealed, for the first time, the sub-arcsec fine structures of the "white light" flare. The G-band flare ribbons on sunspot umbrae showed a sharp leading edge followed by a diffuse inside, as well as previously known core-halo structure. The underlying structures such as umbral dots, penumbral filaments and granules were visible in the flare ribbons. Assuming that the sharp leading edge was directly heated by particle beam and the diffuse parts were heated by radiative back-warming, we estimate the depth of the diffuse flare emission using the intensity profile of the flare ribbon. We found that the depth of the diffuse emission is about 100 km or less from the height of the source of radiative back-warming. The flare ribbons were also visible in the Stokes-V images of FeI 6302A, as a transient polarity reversal. This is probably related to "magnetic transient" reported in the literature. The intensity increase in Stokes-I images indicates that the FeI 6302A line was significantly deformed by the flare, which may cause such a magnetic transient.Comment: 14 pages, 7 figures, PASJ in pres

    Internet Image Viewer (iiV)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visualizing 3-dimensional (3-D) datasets is an important part of modern neuroimaging research. Many tools address this problem; however, they often fail to address specific needs and flexibility, such as the ability to work with different data formats, to control how and what data are displayed, to interact with values, and to undo mistakes.</p> <p>Results</p> <p>iiV, an interactive software program for displaying 3-D brain images, is described. This tool was programmed to solve basic problems in 3-D data visualization. It is written in Java so it is extensible, is platform independent, and can display images within web pages.</p> <p>iiV displays 3-D images as 2-dimensional (2-D) slices with each slice being an independent object with independent features such as location, zoom, colors, labels, etc. Feature manipulation becomes easier by having a full set of editing capabilities including the following: undo or redo changes; drag, copy, delete and paste objects; and save objects with their features to a file for future editing. It can read multiple standard positron emission tomography (PET) and magnetic resonance imaging (MRI) file formats like ECAT, ECAT7, ANALYZE, NIfTI-1 and DICOM. We present sample applications to illustrate some of the features and capabilities.</p> <p>Conclusion</p> <p>iiV is an image display tool with many useful features. It is highly extensible, platform independent, and web-compatible. This report summarizes its features and applications, while illustrating iiV's usefulness to the biomedical imaging community.</p

    Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare

    Full text link
    We study the non-thermal emissions in a solar flare occurring on 2003 May 29 by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This flare shows several typical behaviors of the HXR and microwave emissions: time delay of microwave peaks relative to HXR peaks, loop-top microwave and footpoint HXR sources, and a harder electron energy distribution inferred from the microwave spectrum than from the HXR spectrum. In addition, we found that the time profile of the spectral index of the higher-energy (\gsim 100 keV) HXRs is similar to that of the microwaves, and is delayed from that of the lower-energy (\lsim 100 keV) HXRs. We interpret these observations in terms of an electron transport model called {\TPP}. We numerically solved the spatially-homogeneous {\FP} equation to determine electron evolution in energy and pitch-angle space. By comparing the behaviors of the HXR and microwave emissions predicted by the model with the observations, we discuss the pitch-angle distribution of the electrons injected into the flare site. We found that the observed spectral variations can qualitatively be explained if the injected electrons have a pitch-angle distribution concentrated perpendicular to the magnetic field lines rather than isotropic distribution.Comment: 32 pages, 12 figures, accepted for publication in The Astronomical Journa

    A Systematic Examination of Particle Motion in a Collapsing Magnetic Trap Model for Solar Flares

    Full text link
    Context. It has been suggested that collapsing magnetic traps may contribute to accelerating particles to high energies during solar flares. Aims. We present a detailed investigation of the energization processes of particles in collapsing magnetic traps, using a specific model. We also compare for the first time the energization processes in a symmetric and an asymmetric trap model. Methods. Particle orbits are calculated using guiding centre theory. We systematically investigate the dependence of the energization process on initial position, initial energy and initial pitch angle. Results. We find that in our symmetric trap model particles can gain up to about 50 times their initial energy, but that for most initial conditions the energy gain is more moderate. Particles with an initial position in the weak field region of the collapsing trap and with pitch angles around 90 degrees achieve the highest energy gain, with betatron acceleration of the perpendicular energy the dominant energization mechanism. For particles with smaller initial pitch angle, but still outside the loss cone, we find the possibility of a significant increase in parallel energy. This increase in parallel energy can be attributed to the curvature term in the parallel equation of motion and the associated energy gain happens in the center of the trap where the field line curvature has its maximum. We find qualitatively similar results for the asymmetric trap model, but with smaller energy gains and a larger number of particles escaping from the trap.Comment: 11 pages, 13 figures. To be published in Astronomy and Astrophysic

    Magnetic Reconnection in Non-Equilibrium Ionization Plasma

    Full text link
    We have studied the effect of time-dependent ionization and recombination processes on magnetic reconnection in the solar corona. Petschek-type steady reconnection, in which model the magnetic energy is mainly converted at the slow-mode shocks, was assumed. We carried out the time-dependent ionization calculation in the magnetic reconnection structure. We only calculated the transient ionization of iron; the other species were assumed to be in ionization equilibrium. The intensity of line emissions at specific wavelengths were also calculated for comparison with {\it Hinode} or other observations in future. What we found is as follows: (1) iron is mostly in non-equilibrium ionization in the reconnection region, (2) the intensity of line emission estimated by the time-dependent ionization calculation is significantly different from that with the ionization equilibrium assumption, (3) the effect of time-dependent ionization is sensitive to the electron density in the case that the electron density is less than 101010^{10} cm3^{-3}, (4) the effect of thermal conduction lessens the time-dependent ionization effect, (5) the effect of radiative cooling is negligibly small even if we take into account time-dependent ionization.Comment: accepted for publication in The Astrophysical Journa

    Frequency comb transferred by surface plasmon resonance

    Get PDF
    Frequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock, have shown remarkable potential in time/frequency metrology, atomic/molecular spectroscopy and precision LIDARs. Applications have extended to coherent nonlinear Raman spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency combs will create novel possibilities in nano-photonics and plasmonics; however, its interrelation with surface plasmons is unexplored despite the important role that plasmonics plays in nonlinear spectroscopy and quantum optics through the manipulation of light on a sub-wavelength scale. Here, we demonstrate that a frequency comb can be transformed to a plasmonic comb in plasmonic nanostructures and reverted to the original frequency comb without noticeable degradation of &lt;6.51 x 10(-19) in absolute position, 2.92 x 10(-19) in stability and 1Hz in linewidth. The results indicate that the superior performance of a well-defined frequency comb can be applied to nanoplasmonic spectroscopy, quantum metrology and subwavelength photonic circuits.open
    corecore