240 research outputs found
Enhancing Soil-Grown Strawberry Fruit Quality through the Synergistic Influence of Beneficial Microorganisms and Digestate
The use of livestock manure as agricultural soil amendments is a significant source of ammonia emissions and nitrate leaching. Anaerobic digestion of manure can yield to solid and liquid by-products usable as fertilizers that can limit these negative impacts. They could be further supplemented with plant growth-promoting microorganisms (PGPM) to improve plant growth and yield. This study investigated the impact of PGPMs and anaerobic digestates on strawberry quality and rhizospheric microbial community. Strawberry plants were grown in soils treated with PGPMs (pure culture of Azospirillum brasilense or a commercial product with effective microorganisms) along with either liquid or solid digestate. Effects of digestates and PGPMs were evaluated by measuring plant yield and nutraceutical values, while the rhizospheric microbial community was assessed through an eDNA metabarcoding approach. Results suggest using PGPMs combined with digestates enhances plant yield, with increases of up to 40-60% in fruit yield and 9-18% in nutraceutical value, compared to the controls. The rhizospheric microbial community was influenced only by digestates. Nevertheless, these alterations have not led to significant changes in the community, thus ensuring its long-term stability. Moreover, PGPMs were not detected into the rhizospheric community. Our data pointed out that both PGPMs and digestates can represent a sustainable approach to increase strawberry plant yield. However, PGPMs require repeated inoculations in long-term projects to achieve and maintain desired outcomes. These findings emphasize the complexity of rhizospheric microbial interactions and underscore the importance of continued research to optimize agricultural practices while maintaining ecosystem stability
Coinductive subtyping for abstract compilation of object-oriented languages into Horn formulas
In recent work we have shown how it is possible to define very precise type
systems for object-oriented languages by abstractly compiling a program into a
Horn formula f. Then type inference amounts to resolving a certain goal w.r.t.
the coinductive (that is, the greatest) Herbrand model of f.
Type systems defined in this way are idealized, since in the most interesting
instantiations both the terms of the coinductive Herbrand universe and goal
derivations cannot be finitely represented. However, sound and quite expressive
approximations can be implemented by considering only regular terms and
derivations. In doing so, it is essential to introduce a proper subtyping
relation formalizing the notion of approximation between types.
In this paper we study a subtyping relation on coinductive terms built on
union and object type constructors. We define an interpretation of types as set
of values induced by a quite intuitive relation of membership of values to
types, and prove that the definition of subtyping is sound w.r.t. subset
inclusion between type interpretations. The proof of soundness has allowed us
to simplify the notion of contractive derivation and to discover that the
previously given definition of subtyping did not cover all possible
representations of the empty type
Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity.
Viticulture represents an important agricultural practice in many countries worldwide. Yet, the continuous use of fungicides has caused copper (Cu) accumulation in soils, which represent a major environmental and toxicological concern. Despite being an important micronutrient, Cu can be a potential toxicant at high concentrations since it may cause morphological, anatomical and physiological changes in plants, decreasing both food productivity and quality. Rhizosphere processes can, however, actively control the uptake and translocation of Cu in plants. In particular, root exudates affecting the chemical, physical and biological characteristics of the rhizosphere, might reduce the availability of Cu in the soil and hence its absorption. In addition, this review will aim at discussing the advantages and disadvantages of agronomic practices, such as liming, the use of pesticides, the application of organic matter, biochar and coal fly ashes, the inoculation with bacteria and/or mycorrhizal fungi and the intercropping, in alleviating Cu toxicity symptoms
How do Plants-Having Different Exudation Patterns-Shape a Similar Microbial Community?
ABSTRACT Microorganisms associated with plants have been shown to improve plant growth and yield participating in the biogeochemical cycles of elements in soil. For these reasons, the rhizosphere microbiome is considered one of the key determinants of plant health and productivity. Plants can influence the qualitative and quantitative composition of the rhizosphere microbial community by releasing different classes of organic compound. Yet, this release depends on several factors, such as plant genotype, soil properties, plant nutritional status, climatic conditions. Within a previous study, we showed that the rhizosphere microbial communities associated to both iron (Fe)-sufficient and Fe-deficient tomato and barley plants, grown in different agricultural calcareous soils, were surprisingly similar and formed by bacterial strains that exhibit plant growthpromoting (PGPR) traits
A smart and sustainable future for viticulture is rooted in soil: How to face cu toxicity
In recent decades, agriculture has faced the fundamental challenge of needing to increase food production and quality in order to meet the requirements of a growing global population. Similarly, viticulture has also been undergoing change. Several countries are reducing their vineyard areas, and several others are increasing them. In addition, viticulture is moving towards higher altitudes and latitudes due to climate change. Furthermore, global warming is also exacerbating the incidence of fungal diseases in vineyards, forcing farmers to apply agrochemicals to preserve production yields and quality. The repeated application of copper (Cu)-based fungicides in con-ventional and organic farming has caused a stepwise accumulation of Cu in vineyard soils, posing environmental and toxicological threats. High Cu concentrations in soils can have multiple impacts on agricultural systems. In fact, it can (i) alter the chemical-physical properties of soils, thus com-promising their fertility; (ii) induce toxicity phenomena in plants, producing detrimental effects on growth and productivity; and (iii) affect the microbial biodiversity of soils, thereby influencing some microbial-driven soil processes. However, several indirect (e.g., management of rhizosphere processes through intercropping and/or fertilization strategies) and direct (e.g., exploitation of vine resistant genotypes) strategies have been proposed to restrain Cu accumulation in soils. Furthermore, the application of precision and smart viticulture paradigms and their related technologies could allow a timely, localized and balanced distribution of agrochemicals to achieve the required goals. The present review highlights the necessity of applying multidisciplinary approaches to meet the requisites of sustainability demanded of modern viticulture
Iron fertilization to enhance tolerance mechanisms to copper toxicityof ryegrass plants used as cover crop in vineyards.
Ryegrass (Lolium perenneL.) is a plant species that can express mechanisms of tolerance to copper (Cu)toxicity. Therefore, the agronomical approach of intercropping system with ryegrass may represent apromising tool to limit the onset of Cu toxicity symptoms in the other intercropped plants species,particularly when an inadequate nutrient availability like iron (Fe) shortage is also concurrently present.This study aimed at assessing the mechanisms involved in the mitigation of Cu phytotoxicity and thestress effects on plant growth, root morphology and nutrition of ryegrass fertilized with two different Fesources. To this purpose, seedlings of ryegrass were hydroponically grown for 14 days in controlledconditions with 4 different levels of Cu (0.2, 5.0, 25 and 50mM) and with either 100mM Fe-EDDHA or Fe-EDTA. Results show that high levels of Cu availability enhanced the root content of organic anions as wellas the root exudation. Different Fe fertilizations at the condition of 50mM Cu induced changes in rootphenolic compounds, citrate and fumarate contents and the exudation pattern of phenolic compounds.Differences in plant growth were not observed between the two Fe sources, although Cu concentration inplant tissue fed with Fe-EDTA was lower in the condition of 50mM Cu. The enhanced root exudation ofCu-complexing organic compounds (including phenolics) in ryegrass plants when exposed to excessiveCu availability could be at the basis of the ameliorated edaphic rhizosphere conditions (lower Cuavailability). For this reason, from the agronomical point of view ryegrass plants used in intercroppingsystems with crops like vine plants could represent a promising strategy to control Cu toxicity invineyard soils. Further studies under thefield conditions must be taken to support presentfindings.©2019 Elsevier Ltd. All rights reserved
Evaluating clinician experience in value-based health care: the development and validation of the Clinician Experience Measure (CEM)
Background: Clinicians’ experiences of providing care constitute an important outcome for evaluating care from a value-based healthcare perspective. Yet no currently available instruments have been designed and validated for assessing clinicians’ experiences. This research sought to address this important gap by developing and validating a novel instrument in a public health system in Australia. Methods: A multi-method project was conducted using co-design with 12 clinician leaders from a range of NSW Health Local Health Districts to develop the Clinician Experience Measure (CEM). Validity and reliability analyses were conducted in two stages, first assessing face and content validity with a pool of 25 clinicians and then using psychometric analysis with data from 433 clinicians, including nurses, doctors and allied health and representing all districts within one jurisdiction in Australia. Results: Data gathered from 25 clinicians via the face and content validity process indicated that the initial 31-items were relevant to the range of staff employed in the NSW state health system, with minor edits made to the survey layout and wording within two items. Psychometric analysis led to a rationalised 18-item final instrument, comprising four domains: psychological safety (4-items); quality of care (5-items); clinician engagement (4-items) and interprofessional collaboration (5-items). The 18-item four-factor model produced a good fit to the data and high levels of reliability, with factor loadings ranging from.62 to.94, with Cronbach’s alpha (range:.83 to.96) and composite reliability (range:.85 to.97). Conclusions: The CEM is an instrument to capture clinicians’ experiences of providing care across a health system. The CEM provides a useful tool for healthcare leaders and policy makers to benchmark and assess the impact of value-based care initiatives and direct change efforts
Plasmopara viticola infection affects mineral elements allocation and distribution in Vitis vinifera leaves
Plasmopara viticola is one of the most important pathogens infecting Vitis vinifera plants. The interactions among P. viticola and both susceptible and resistant grapevine plants have been extensively characterised, at transcriptomic, proteomic and metabolomic levels. However, the involvement of plants ionome in the response against the pathogen has been completely neglected so far. Therefore, this study was aimed at investigating the possible role of leaf ionomic modulation during compatible and incompatible interactions between P. viticola and grapevine plants. In susceptible cultivars, a dramatic redistribution of mineral elements has been observed, thus uncovering a possible role for mineral nutrients in the response against pathogens. On the contrary, the resistant cultivars did not present substantial rearrangement of mineral elements at leaf level, except for manganese (Mn) and iron (Fe). This might demonstrate that, resistant cultivars, albeit expressing the resistance gene, still exploit a pathogen response mechanism based on the local increase in the concentration of microelements, which are involved in the synthesis of secondary metabolites and reactive oxygen species. Moreover, these data also highlight the link between the mineral nutrition and plants\u2019 response to pathogens, further stressing that appropriate fertilization strategies can be fundamental for the expression of response mechanisms against pathogens
Exploiting the Temporal Logic Hierarchy and the Non-Confluence Property for Efficient LTL Synthesis
The classic approaches to synthesize a reactive system from a linear temporal
logic (LTL) specification first translate the given LTL formula to an
equivalent omega-automaton and then compute a winning strategy for the
corresponding omega-regular game. To this end, the obtained omega-automata have
to be (pseudo)-determinized where typically a variant of Safra's
determinization procedure is used. In this paper, we show that this
determinization step can be significantly improved for tool implementations by
replacing Safra's determinization by simpler determinization procedures. In
particular, we exploit (1) the temporal logic hierarchy that corresponds to the
well-known automata hierarchy consisting of safety, liveness, Buechi, and
co-Buechi automata as well as their boolean closures, (2) the non-confluence
property of omega-automata that result from certain translations of LTL
formulas, and (3) symbolic implementations of determinization procedures for
the Rabin-Scott and the Miyano-Hayashi breakpoint construction. In particular,
we present convincing experimental results that demonstrate the practical
applicability of our new synthesis procedure
- …